Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lsppr0 | Structured version Visualization version GIF version |
Description: The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014.) |
Ref | Expression |
---|---|
lsppr0.v | ⊢ 𝑉 = (Base‘𝑊) |
lsppr0.z | ⊢ 0 = (0g‘𝑊) |
lsppr0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lsppr0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lsppr0.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
lsppr0 | ⊢ (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsppr0.v | . . 3 ⊢ 𝑉 = (Base‘𝑊) | |
2 | lsppr0.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑊) | |
3 | eqid 2739 | . . 3 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
4 | lsppr0.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
5 | lsppr0.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
6 | lsppr0.z | . . . . 5 ⊢ 0 = (0g‘𝑊) | |
7 | 1, 6 | lmod0vcl 20042 | . . . 4 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
8 | 4, 7 | syl 17 | . . 3 ⊢ (𝜑 → 0 ∈ 𝑉) |
9 | 1, 2, 3, 4, 5, 8 | lsmpr 20241 | . 2 ⊢ (𝜑 → (𝑁‘{𝑋, 0 }) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{ 0 }))) |
10 | 6, 2 | lspsn0 20160 | . . . 4 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
11 | 4, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝑁‘{ 0 }) = { 0 }) |
12 | 11 | oveq2d 7268 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{ 0 })) = ((𝑁‘{𝑋})(LSSum‘𝑊){ 0 })) |
13 | 1, 2 | lspsnsubg 20132 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
14 | 4, 5, 13 | syl2anc 587 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
15 | 6, 3 | lsm01 19167 | . . 3 ⊢ ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊){ 0 }) = (𝑁‘{𝑋})) |
16 | 14, 15 | syl 17 | . 2 ⊢ (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊){ 0 }) = (𝑁‘{𝑋})) |
17 | 9, 12, 16 | 3eqtrd 2783 | 1 ⊢ (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 {csn 4558 {cpr 4560 ‘cfv 6415 (class class class)co 7252 Basecbs 16815 0gc0g 17042 SubGrpcsubg 18639 LSSumclsm 19129 LModclmod 20013 LSpanclspn 20123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-1st 7801 df-2nd 7802 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 df-plusg 16876 df-0g 17044 df-mgm 18216 df-sgrp 18265 df-mnd 18276 df-submnd 18321 df-grp 18470 df-minusg 18471 df-sbg 18472 df-subg 18642 df-cntz 18813 df-lsm 19131 df-cmn 19278 df-abl 19279 df-mgp 19611 df-ur 19628 df-ring 19675 df-lmod 20015 df-lss 20084 df-lsp 20124 |
This theorem is referenced by: lspfixed 20280 dihprrn 39346 dvh3dim 39366 mapdindp2 39641 hdmap11lem2 39762 |
Copyright terms: Public domain | W3C validator |