MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppr0 Structured version   Visualization version   GIF version

Theorem lsppr0 21035
Description: The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lsppr0.v 𝑉 = (Base‘𝑊)
lsppr0.z 0 = (0g𝑊)
lsppr0.n 𝑁 = (LSpan‘𝑊)
lsppr0.w (𝜑𝑊 ∈ LMod)
lsppr0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lsppr0 (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋}))

Proof of Theorem lsppr0
StepHypRef Expression
1 lsppr0.v . . 3 𝑉 = (Base‘𝑊)
2 lsppr0.n . . 3 𝑁 = (LSpan‘𝑊)
3 eqid 2733 . . 3 (LSSum‘𝑊) = (LSSum‘𝑊)
4 lsppr0.w . . 3 (𝜑𝑊 ∈ LMod)
5 lsppr0.x . . 3 (𝜑𝑋𝑉)
6 lsppr0.z . . . . 5 0 = (0g𝑊)
71, 6lmod0vcl 20833 . . . 4 (𝑊 ∈ LMod → 0𝑉)
84, 7syl 17 . . 3 (𝜑0𝑉)
91, 2, 3, 4, 5, 8lsmpr 21032 . 2 (𝜑 → (𝑁‘{𝑋, 0 }) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{ 0 })))
106, 2lspsn0 20950 . . . 4 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
114, 10syl 17 . . 3 (𝜑 → (𝑁‘{ 0 }) = { 0 })
1211oveq2d 7371 . 2 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{ 0 })) = ((𝑁‘{𝑋})(LSSum‘𝑊){ 0 }))
131, 2lspsnsubg 20922 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
144, 5, 13syl2anc 584 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
156, 3lsm01 19591 . . 3 ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊){ 0 }) = (𝑁‘{𝑋}))
1614, 15syl 17 . 2 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊){ 0 }) = (𝑁‘{𝑋}))
179, 12, 163eqtrd 2772 1 (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {csn 4577  {cpr 4579  cfv 6489  (class class class)co 7355  Basecbs 17127  0gc0g 17350  SubGrpcsubg 19041  LSSumclsm 19554  LModclmod 20802  LSpanclspn 20913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-nn 12137  df-2 12199  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-submnd 18700  df-grp 18857  df-minusg 18858  df-sbg 18859  df-subg 19044  df-cntz 19237  df-lsm 19556  df-cmn 19702  df-abl 19703  df-mgp 20067  df-rng 20079  df-ur 20108  df-ring 20161  df-lmod 20804  df-lss 20874  df-lsp 20914
This theorem is referenced by:  lspfixed  21074  dihprrn  41598  dvh3dim  41618  mapdindp2  41893  hdmap11lem2  42014
  Copyright terms: Public domain W3C validator