MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lsppr0 Structured version   Visualization version   GIF version

Theorem lsppr0 19451
Description: The span of a vector paired with zero equals the span of the singleton of the vector. (Contributed by NM, 29-Aug-2014.)
Hypotheses
Ref Expression
lsppr0.v 𝑉 = (Base‘𝑊)
lsppr0.z 0 = (0g𝑊)
lsppr0.n 𝑁 = (LSpan‘𝑊)
lsppr0.w (𝜑𝑊 ∈ LMod)
lsppr0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lsppr0 (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋}))

Proof of Theorem lsppr0
StepHypRef Expression
1 lsppr0.v . . 3 𝑉 = (Base‘𝑊)
2 lsppr0.n . . 3 𝑁 = (LSpan‘𝑊)
3 eqid 2825 . . 3 (LSSum‘𝑊) = (LSSum‘𝑊)
4 lsppr0.w . . 3 (𝜑𝑊 ∈ LMod)
5 lsppr0.x . . 3 (𝜑𝑋𝑉)
6 lsppr0.z . . . . 5 0 = (0g𝑊)
71, 6lmod0vcl 19248 . . . 4 (𝑊 ∈ LMod → 0𝑉)
84, 7syl 17 . . 3 (𝜑0𝑉)
91, 2, 3, 4, 5, 8lsmpr 19448 . 2 (𝜑 → (𝑁‘{𝑋, 0 }) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{ 0 })))
106, 2lspsn0 19367 . . . 4 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
114, 10syl 17 . . 3 (𝜑 → (𝑁‘{ 0 }) = { 0 })
1211oveq2d 6921 . 2 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{ 0 })) = ((𝑁‘{𝑋})(LSSum‘𝑊){ 0 }))
131, 2lspsnsubg 19339 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
144, 5, 13syl2anc 581 . . 3 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
156, 3lsm01 18435 . . 3 ((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) → ((𝑁‘{𝑋})(LSSum‘𝑊){ 0 }) = (𝑁‘{𝑋}))
1614, 15syl 17 . 2 (𝜑 → ((𝑁‘{𝑋})(LSSum‘𝑊){ 0 }) = (𝑁‘{𝑋}))
179, 12, 163eqtrd 2865 1 (𝜑 → (𝑁‘{𝑋, 0 }) = (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1658  wcel 2166  {csn 4397  {cpr 4399  cfv 6123  (class class class)co 6905  Basecbs 16222  0gc0g 16453  SubGrpcsubg 17939  LSSumclsm 18400  LModclmod 19219  LSpanclspn 19330
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-er 8009  df-en 8223  df-dom 8224  df-sdom 8225  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-nn 11351  df-2 11414  df-ndx 16225  df-slot 16226  df-base 16228  df-sets 16229  df-ress 16230  df-plusg 16318  df-0g 16455  df-mgm 17595  df-sgrp 17637  df-mnd 17648  df-submnd 17689  df-grp 17779  df-minusg 17780  df-sbg 17781  df-subg 17942  df-cntz 18100  df-lsm 18402  df-cmn 18548  df-abl 18549  df-mgp 18844  df-ur 18856  df-ring 18903  df-lmod 19221  df-lss 19289  df-lsp 19331
This theorem is referenced by:  lspfixed  19487  lspfixedOLD  19488  dihprrn  37501  dvh3dim  37521  mapdindp2  37796  hdmap11lem2  37917
  Copyright terms: Public domain W3C validator