![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspun0 | Structured version Visualization version GIF version |
Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.) |
Ref | Expression |
---|---|
lspun0.v | ⊢ 𝑉 = (Base‘𝑊) |
lspun0.o | ⊢ 0 = (0g‘𝑊) |
lspun0.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspun0.w | ⊢ (𝜑 → 𝑊 ∈ LMod) |
lspun0.x | ⊢ (𝜑 → 𝑋 ⊆ 𝑉) |
Ref | Expression |
---|---|
lspun0 | ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspun0.w | . . 3 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | lspun0.x | . . 3 ⊢ (𝜑 → 𝑋 ⊆ 𝑉) | |
3 | lspun0.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑊) | |
4 | lspun0.o | . . . . . 6 ⊢ 0 = (0g‘𝑊) | |
5 | 3, 4 | lmod0vcl 20911 | . . . . 5 ⊢ (𝑊 ∈ LMod → 0 ∈ 𝑉) |
6 | 1, 5 | syl 17 | . . . 4 ⊢ (𝜑 → 0 ∈ 𝑉) |
7 | 6 | snssd 4834 | . . 3 ⊢ (𝜑 → { 0 } ⊆ 𝑉) |
8 | lspun0.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑊) | |
9 | 3, 8 | lspun 21008 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉 ∧ { 0 } ⊆ 𝑉) → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 })))) |
10 | 1, 2, 7, 9 | syl3anc 1371 | . 2 ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 })))) |
11 | 4, 8 | lspsn0 21029 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 }) |
12 | 1, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{ 0 }) = { 0 }) |
13 | 12 | uneq2d 4191 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ (𝑁‘{ 0 })) = ((𝑁‘𝑋) ∪ { 0 })) |
14 | eqid 2740 | . . . . . . . . 9 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
15 | 3, 14, 8 | lspcl 20997 | . . . . . . . 8 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉) → (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) |
16 | 1, 2, 15 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) |
17 | 4, 14 | lss0ss 20970 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ (𝑁‘𝑋) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁‘𝑋)) |
18 | 1, 16, 17 | syl2anc 583 | . . . . . 6 ⊢ (𝜑 → { 0 } ⊆ (𝑁‘𝑋)) |
19 | ssequn2 4212 | . . . . . 6 ⊢ ({ 0 } ⊆ (𝑁‘𝑋) ↔ ((𝑁‘𝑋) ∪ { 0 }) = (𝑁‘𝑋)) | |
20 | 18, 19 | sylib 218 | . . . . 5 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ { 0 }) = (𝑁‘𝑋)) |
21 | 13, 20 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → ((𝑁‘𝑋) ∪ (𝑁‘{ 0 })) = (𝑁‘𝑋)) |
22 | 21 | fveq2d 6924 | . . 3 ⊢ (𝜑 → (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁‘(𝑁‘𝑋))) |
23 | 3, 8 | lspidm 21007 | . . . 4 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ⊆ 𝑉) → (𝑁‘(𝑁‘𝑋)) = (𝑁‘𝑋)) |
24 | 1, 2, 23 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑁‘(𝑁‘𝑋)) = (𝑁‘𝑋)) |
25 | 22, 24 | eqtrd 2780 | . 2 ⊢ (𝜑 → (𝑁‘((𝑁‘𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁‘𝑋)) |
26 | 10, 25 | eqtrd 2780 | 1 ⊢ (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 ∪ cun 3974 ⊆ wss 3976 {csn 4648 ‘cfv 6573 Basecbs 17258 0gc0g 17499 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-lmod 20882 df-lss 20953 df-lsp 20993 |
This theorem is referenced by: dvh4dimN 41404 |
Copyright terms: Public domain | W3C validator |