![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lspun0 | Structured version Visualization version GIF version |
Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.) |
Ref | Expression |
---|---|
lspun0.v | β’ π = (Baseβπ) |
lspun0.o | β’ 0 = (0gβπ) |
lspun0.n | β’ π = (LSpanβπ) |
lspun0.w | β’ (π β π β LMod) |
lspun0.x | β’ (π β π β π) |
Ref | Expression |
---|---|
lspun0 | β’ (π β (πβ(π βͺ { 0 })) = (πβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspun0.w | . . 3 β’ (π β π β LMod) | |
2 | lspun0.x | . . 3 β’ (π β π β π) | |
3 | lspun0.v | . . . . . 6 β’ π = (Baseβπ) | |
4 | lspun0.o | . . . . . 6 β’ 0 = (0gβπ) | |
5 | 3, 4 | lmod0vcl 20493 | . . . . 5 β’ (π β LMod β 0 β π) |
6 | 1, 5 | syl 17 | . . . 4 β’ (π β 0 β π) |
7 | 6 | snssd 4811 | . . 3 β’ (π β { 0 } β π) |
8 | lspun0.n | . . . 4 β’ π = (LSpanβπ) | |
9 | 3, 8 | lspun 20590 | . . 3 β’ ((π β LMod β§ π β π β§ { 0 } β π) β (πβ(π βͺ { 0 })) = (πβ((πβπ) βͺ (πβ{ 0 })))) |
10 | 1, 2, 7, 9 | syl3anc 1371 | . 2 β’ (π β (πβ(π βͺ { 0 })) = (πβ((πβπ) βͺ (πβ{ 0 })))) |
11 | 4, 8 | lspsn0 20611 | . . . . . . 7 β’ (π β LMod β (πβ{ 0 }) = { 0 }) |
12 | 1, 11 | syl 17 | . . . . . 6 β’ (π β (πβ{ 0 }) = { 0 }) |
13 | 12 | uneq2d 4162 | . . . . 5 β’ (π β ((πβπ) βͺ (πβ{ 0 })) = ((πβπ) βͺ { 0 })) |
14 | eqid 2732 | . . . . . . . . 9 β’ (LSubSpβπ) = (LSubSpβπ) | |
15 | 3, 14, 8 | lspcl 20579 | . . . . . . . 8 β’ ((π β LMod β§ π β π) β (πβπ) β (LSubSpβπ)) |
16 | 1, 2, 15 | syl2anc 584 | . . . . . . 7 β’ (π β (πβπ) β (LSubSpβπ)) |
17 | 4, 14 | lss0ss 20551 | . . . . . . 7 β’ ((π β LMod β§ (πβπ) β (LSubSpβπ)) β { 0 } β (πβπ)) |
18 | 1, 16, 17 | syl2anc 584 | . . . . . 6 β’ (π β { 0 } β (πβπ)) |
19 | ssequn2 4182 | . . . . . 6 β’ ({ 0 } β (πβπ) β ((πβπ) βͺ { 0 }) = (πβπ)) | |
20 | 18, 19 | sylib 217 | . . . . 5 β’ (π β ((πβπ) βͺ { 0 }) = (πβπ)) |
21 | 13, 20 | eqtrd 2772 | . . . 4 β’ (π β ((πβπ) βͺ (πβ{ 0 })) = (πβπ)) |
22 | 21 | fveq2d 6892 | . . 3 β’ (π β (πβ((πβπ) βͺ (πβ{ 0 }))) = (πβ(πβπ))) |
23 | 3, 8 | lspidm 20589 | . . . 4 β’ ((π β LMod β§ π β π) β (πβ(πβπ)) = (πβπ)) |
24 | 1, 2, 23 | syl2anc 584 | . . 3 β’ (π β (πβ(πβπ)) = (πβπ)) |
25 | 22, 24 | eqtrd 2772 | . 2 β’ (π β (πβ((πβπ) βͺ (πβ{ 0 }))) = (πβπ)) |
26 | 10, 25 | eqtrd 2772 | 1 β’ (π β (πβ(π βͺ { 0 })) = (πβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βͺ cun 3945 β wss 3947 {csn 4627 βcfv 6540 Basecbs 17140 0gc0g 17381 LModclmod 20463 LSubSpclss 20534 LSpanclspn 20574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-plusg 17206 df-0g 17383 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-grp 18818 df-minusg 18819 df-sbg 18820 df-mgp 19982 df-ur 19999 df-ring 20051 df-lmod 20465 df-lss 20535 df-lsp 20575 |
This theorem is referenced by: dvh4dimN 40306 |
Copyright terms: Public domain | W3C validator |