MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspun0 Structured version   Visualization version   GIF version

Theorem lspun0 19777
Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.)
Hypotheses
Ref Expression
lspun0.v 𝑉 = (Base‘𝑊)
lspun0.o 0 = (0g𝑊)
lspun0.n 𝑁 = (LSpan‘𝑊)
lspun0.w (𝜑𝑊 ∈ LMod)
lspun0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lspun0 (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁𝑋))

Proof of Theorem lspun0
StepHypRef Expression
1 lspun0.w . . 3 (𝜑𝑊 ∈ LMod)
2 lspun0.x . . 3 (𝜑𝑋𝑉)
3 lspun0.v . . . . . 6 𝑉 = (Base‘𝑊)
4 lspun0.o . . . . . 6 0 = (0g𝑊)
53, 4lmod0vcl 19657 . . . . 5 (𝑊 ∈ LMod → 0𝑉)
61, 5syl 17 . . . 4 (𝜑0𝑉)
76snssd 4735 . . 3 (𝜑 → { 0 } ⊆ 𝑉)
8 lspun0.n . . . 4 𝑁 = (LSpan‘𝑊)
93, 8lspun 19753 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ { 0 } ⊆ 𝑉) → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))))
101, 2, 7, 9syl3anc 1367 . 2 (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))))
114, 8lspsn0 19774 . . . . . . 7 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
121, 11syl 17 . . . . . 6 (𝜑 → (𝑁‘{ 0 }) = { 0 })
1312uneq2d 4138 . . . . 5 (𝜑 → ((𝑁𝑋) ∪ (𝑁‘{ 0 })) = ((𝑁𝑋) ∪ { 0 }))
14 eqid 2821 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
153, 14, 8lspcl 19742 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁𝑋) ∈ (LSubSp‘𝑊))
161, 2, 15syl2anc 586 . . . . . . 7 (𝜑 → (𝑁𝑋) ∈ (LSubSp‘𝑊))
174, 14lss0ss 19714 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑁𝑋) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁𝑋))
181, 16, 17syl2anc 586 . . . . . 6 (𝜑 → { 0 } ⊆ (𝑁𝑋))
19 ssequn2 4158 . . . . . 6 ({ 0 } ⊆ (𝑁𝑋) ↔ ((𝑁𝑋) ∪ { 0 }) = (𝑁𝑋))
2018, 19sylib 220 . . . . 5 (𝜑 → ((𝑁𝑋) ∪ { 0 }) = (𝑁𝑋))
2113, 20eqtrd 2856 . . . 4 (𝜑 → ((𝑁𝑋) ∪ (𝑁‘{ 0 })) = (𝑁𝑋))
2221fveq2d 6668 . . 3 (𝜑 → (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁‘(𝑁𝑋)))
233, 8lspidm 19752 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘(𝑁𝑋)) = (𝑁𝑋))
241, 2, 23syl2anc 586 . . 3 (𝜑 → (𝑁‘(𝑁𝑋)) = (𝑁𝑋))
2522, 24eqtrd 2856 . 2 (𝜑 → (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁𝑋))
2610, 25eqtrd 2856 1 (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  cun 3933  wss 3935  {csn 4560  cfv 6349  Basecbs 16477  0gc0g 16707  LModclmod 19628  LSubSpclss 19697  LSpanclspn 19737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mgp 19234  df-ur 19246  df-ring 19293  df-lmod 19630  df-lss 19698  df-lsp 19738
This theorem is referenced by:  dvh4dimN  38577
  Copyright terms: Public domain W3C validator