MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspun0 Structured version   Visualization version   GIF version

Theorem lspun0 20610
Description: The span of a union with the zero subspace. (Contributed by NM, 22-May-2015.)
Hypotheses
Ref Expression
lspun0.v 𝑉 = (Base‘𝑊)
lspun0.o 0 = (0g𝑊)
lspun0.n 𝑁 = (LSpan‘𝑊)
lspun0.w (𝜑𝑊 ∈ LMod)
lspun0.x (𝜑𝑋𝑉)
Assertion
Ref Expression
lspun0 (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁𝑋))

Proof of Theorem lspun0
StepHypRef Expression
1 lspun0.w . . 3 (𝜑𝑊 ∈ LMod)
2 lspun0.x . . 3 (𝜑𝑋𝑉)
3 lspun0.v . . . . . 6 𝑉 = (Base‘𝑊)
4 lspun0.o . . . . . 6 0 = (0g𝑊)
53, 4lmod0vcl 20489 . . . . 5 (𝑊 ∈ LMod → 0𝑉)
61, 5syl 17 . . . 4 (𝜑0𝑉)
76snssd 4811 . . 3 (𝜑 → { 0 } ⊆ 𝑉)
8 lspun0.n . . . 4 𝑁 = (LSpan‘𝑊)
93, 8lspun 20586 . . 3 ((𝑊 ∈ LMod ∧ 𝑋𝑉 ∧ { 0 } ⊆ 𝑉) → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))))
101, 2, 7, 9syl3anc 1372 . 2 (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))))
114, 8lspsn0 20607 . . . . . . 7 (𝑊 ∈ LMod → (𝑁‘{ 0 }) = { 0 })
121, 11syl 17 . . . . . 6 (𝜑 → (𝑁‘{ 0 }) = { 0 })
1312uneq2d 4162 . . . . 5 (𝜑 → ((𝑁𝑋) ∪ (𝑁‘{ 0 })) = ((𝑁𝑋) ∪ { 0 }))
14 eqid 2733 . . . . . . . . 9 (LSubSp‘𝑊) = (LSubSp‘𝑊)
153, 14, 8lspcl 20575 . . . . . . . 8 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁𝑋) ∈ (LSubSp‘𝑊))
161, 2, 15syl2anc 585 . . . . . . 7 (𝜑 → (𝑁𝑋) ∈ (LSubSp‘𝑊))
174, 14lss0ss 20547 . . . . . . 7 ((𝑊 ∈ LMod ∧ (𝑁𝑋) ∈ (LSubSp‘𝑊)) → { 0 } ⊆ (𝑁𝑋))
181, 16, 17syl2anc 585 . . . . . 6 (𝜑 → { 0 } ⊆ (𝑁𝑋))
19 ssequn2 4182 . . . . . 6 ({ 0 } ⊆ (𝑁𝑋) ↔ ((𝑁𝑋) ∪ { 0 }) = (𝑁𝑋))
2018, 19sylib 217 . . . . 5 (𝜑 → ((𝑁𝑋) ∪ { 0 }) = (𝑁𝑋))
2113, 20eqtrd 2773 . . . 4 (𝜑 → ((𝑁𝑋) ∪ (𝑁‘{ 0 })) = (𝑁𝑋))
2221fveq2d 6892 . . 3 (𝜑 → (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁‘(𝑁𝑋)))
233, 8lspidm 20585 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘(𝑁𝑋)) = (𝑁𝑋))
241, 2, 23syl2anc 585 . . 3 (𝜑 → (𝑁‘(𝑁𝑋)) = (𝑁𝑋))
2522, 24eqtrd 2773 . 2 (𝜑 → (𝑁‘((𝑁𝑋) ∪ (𝑁‘{ 0 }))) = (𝑁𝑋))
2610, 25eqtrd 2773 1 (𝜑 → (𝑁‘(𝑋 ∪ { 0 })) = (𝑁𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1542  wcel 2107  cun 3945  wss 3947  {csn 4627  cfv 6540  Basecbs 17140  0gc0g 17381  LModclmod 20459  LSubSpclss 20530  LSpanclspn 20570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7720  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7851  df-1st 7970  df-2nd 7971  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-grp 18818  df-minusg 18819  df-sbg 18820  df-mgp 19980  df-ur 19997  df-ring 20049  df-lmod 20461  df-lss 20531  df-lsp 20571
This theorem is referenced by:  dvh4dimN  40256
  Copyright terms: Public domain W3C validator