![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lplnnleat | Structured version Visualization version GIF version |
Description: A lattice plane cannot majorize an atom. (Contributed by NM, 14-Jul-2012.) |
Ref | Expression |
---|---|
lplnnleat.l | ⊢ ≤ = (le‘𝐾) |
lplnnleat.a | ⊢ 𝐴 = (Atoms‘𝐾) |
lplnnleat.p | ⊢ 𝑃 = (LPlanes‘𝐾) |
Ref | Expression |
---|---|
lplnnleat | ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1116 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
2 | simp2 1117 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) → 𝑋 ∈ 𝑃) | |
3 | simp3 1118 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐴) | |
4 | lplnnleat.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
5 | eqid 2778 | . . . 4 ⊢ (join‘𝐾) = (join‘𝐾) | |
6 | lplnnleat.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
7 | lplnnleat.p | . . . 4 ⊢ 𝑃 = (LPlanes‘𝐾) | |
8 | 4, 5, 6, 7 | lplnnle2at 36128 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴)) → ¬ 𝑋 ≤ (𝑄(join‘𝐾)𝑄)) |
9 | 1, 2, 3, 3, 8 | syl13anc 1352 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑋 ≤ (𝑄(join‘𝐾)𝑄)) |
10 | 5, 6 | hlatjidm 35956 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑄 ∈ 𝐴) → (𝑄(join‘𝐾)𝑄) = 𝑄) |
11 | 10 | 3adant2 1111 | . . 3 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) → (𝑄(join‘𝐾)𝑄) = 𝑄) |
12 | 11 | breq2d 4941 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) → (𝑋 ≤ (𝑄(join‘𝐾)𝑄) ↔ 𝑋 ≤ 𝑄)) |
13 | 9, 12 | mtbid 316 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑋 ∈ 𝑃 ∧ 𝑄 ∈ 𝐴) → ¬ 𝑋 ≤ 𝑄) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ w3a 1068 = wceq 1507 ∈ wcel 2050 class class class wbr 4929 ‘cfv 6188 (class class class)co 6976 lecple 16428 joincjn 17412 Atomscatm 35850 HLchlt 35937 LPlanesclpl 36079 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-rep 5049 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-ne 2968 df-ral 3093 df-rex 3094 df-reu 3095 df-rab 3097 df-v 3417 df-sbc 3682 df-csb 3787 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-op 4448 df-uni 4713 df-iun 4794 df-br 4930 df-opab 4992 df-mpt 5009 df-id 5312 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-riota 6937 df-ov 6979 df-oprab 6980 df-proset 17396 df-poset 17414 df-plt 17426 df-lub 17442 df-glb 17443 df-join 17444 df-meet 17445 df-p0 17507 df-lat 17514 df-clat 17576 df-oposet 35763 df-ol 35765 df-oml 35766 df-covers 35853 df-ats 35854 df-atl 35885 df-cvlat 35909 df-hlat 35938 df-llines 36085 df-lplanes 36086 |
This theorem is referenced by: lplnneat 36132 lplnn0N 36134 |
Copyright terms: Public domain | W3C validator |