Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnnlelln Structured version   Visualization version   GIF version

Theorem lplnnlelln 39522
Description: A lattice plane is not less than or equal to a lattice line. (Contributed by NM, 14-Jul-2012.)
Hypotheses
Ref Expression
lplnnlelln.l = (le‘𝐾)
lplnnlelln.n 𝑁 = (LLines‘𝐾)
lplnnlelln.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnnlelln ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → ¬ 𝑋 𝑌)

Proof of Theorem lplnnlelln
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1138 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → 𝑌𝑁)
2 eqid 2729 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2729 . . . . 5 (join‘𝐾) = (join‘𝐾)
4 eqid 2729 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lplnnlelln.n . . . . 5 𝑁 = (LLines‘𝐾)
62, 3, 4, 5islln2 39490 . . . 4 (𝐾 ∈ HL → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟)))))
763ad2ant1 1133 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟)))))
81, 7mpbid 232 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))))
9 simp11 1204 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
10 simp12 1205 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → 𝑋𝑃)
11 simp2l 1200 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → 𝑞 ∈ (Atoms‘𝐾))
12 simp2r 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → 𝑟 ∈ (Atoms‘𝐾))
13 lplnnlelln.l . . . . . . . 8 = (le‘𝐾)
14 lplnnlelln.p . . . . . . . 8 𝑃 = (LPlanes‘𝐾)
1513, 3, 4, 14lplnnle2at 39520 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾))) → ¬ 𝑋 (𝑞(join‘𝐾)𝑟))
169, 10, 11, 12, 15syl13anc 1374 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → ¬ 𝑋 (𝑞(join‘𝐾)𝑟))
17 simp3r 1203 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → 𝑌 = (𝑞(join‘𝐾)𝑟))
1817breq2d 5104 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → (𝑋 𝑌𝑋 (𝑞(join‘𝐾)𝑟)))
1916, 18mtbird 325 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → ¬ 𝑋 𝑌)
20193exp 1119 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟)) → ¬ 𝑋 𝑌)))
2120rexlimdvv 3185 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟)) → ¬ 𝑋 𝑌))
2221adantld 490 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → ¬ 𝑋 𝑌))
238, 22mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → ¬ 𝑋 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wrex 3053   class class class wbr 5092  cfv 6482  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  Atomscatm 39242  HLchlt 39329  LLinesclln 39470  LPlanesclpl 39471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-lat 18338  df-clat 18405  df-oposet 39155  df-ol 39157  df-oml 39158  df-covers 39245  df-ats 39246  df-atl 39277  df-cvlat 39301  df-hlat 39330  df-llines 39477  df-lplanes 39478
This theorem is referenced by:  lplnnelln  39525
  Copyright terms: Public domain W3C validator