Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lplnnlelln Structured version   Visualization version   GIF version

Theorem lplnnlelln 37557
Description: A lattice plane is not less than or equal to a lattice line. (Contributed by NM, 14-Jul-2012.)
Hypotheses
Ref Expression
lplnnlelln.l = (le‘𝐾)
lplnnlelln.n 𝑁 = (LLines‘𝐾)
lplnnlelln.p 𝑃 = (LPlanes‘𝐾)
Assertion
Ref Expression
lplnnlelln ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → ¬ 𝑋 𝑌)

Proof of Theorem lplnnlelln
Dummy variables 𝑟 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp3 1137 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → 𝑌𝑁)
2 eqid 2738 . . . . 5 (Base‘𝐾) = (Base‘𝐾)
3 eqid 2738 . . . . 5 (join‘𝐾) = (join‘𝐾)
4 eqid 2738 . . . . 5 (Atoms‘𝐾) = (Atoms‘𝐾)
5 lplnnlelln.n . . . . 5 𝑁 = (LLines‘𝐾)
62, 3, 4, 5islln2 37525 . . . 4 (𝐾 ∈ HL → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟)))))
763ad2ant1 1132 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → (𝑌𝑁 ↔ (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟)))))
81, 7mpbid 231 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → (𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))))
9 simp11 1202 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → 𝐾 ∈ HL)
10 simp12 1203 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → 𝑋𝑃)
11 simp2l 1198 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → 𝑞 ∈ (Atoms‘𝐾))
12 simp2r 1199 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → 𝑟 ∈ (Atoms‘𝐾))
13 lplnnlelln.l . . . . . . . 8 = (le‘𝐾)
14 lplnnlelln.p . . . . . . . 8 𝑃 = (LPlanes‘𝐾)
1513, 3, 4, 14lplnnle2at 37555 . . . . . . 7 ((𝐾 ∈ HL ∧ (𝑋𝑃𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾))) → ¬ 𝑋 (𝑞(join‘𝐾)𝑟))
169, 10, 11, 12, 15syl13anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → ¬ 𝑋 (𝑞(join‘𝐾)𝑟))
17 simp3r 1201 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → 𝑌 = (𝑞(join‘𝐾)𝑟))
1817breq2d 5086 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → (𝑋 𝑌𝑋 (𝑞(join‘𝐾)𝑟)))
1916, 18mtbird 325 . . . . 5 (((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) ∧ (𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) ∧ (𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → ¬ 𝑋 𝑌)
20193exp 1118 . . . 4 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → ((𝑞 ∈ (Atoms‘𝐾) ∧ 𝑟 ∈ (Atoms‘𝐾)) → ((𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟)) → ¬ 𝑋 𝑌)))
2120rexlimdvv 3222 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → (∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟)) → ¬ 𝑋 𝑌))
2221adantld 491 . 2 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → ((𝑌 ∈ (Base‘𝐾) ∧ ∃𝑞 ∈ (Atoms‘𝐾)∃𝑟 ∈ (Atoms‘𝐾)(𝑞𝑟𝑌 = (𝑞(join‘𝐾)𝑟))) → ¬ 𝑋 𝑌))
238, 22mpd 15 1 ((𝐾 ∈ HL ∧ 𝑋𝑃𝑌𝑁) → ¬ 𝑋 𝑌)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  Atomscatm 37277  HLchlt 37364  LLinesclln 37505  LPlanesclpl 37506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513
This theorem is referenced by:  lplnnelln  37560
  Copyright terms: Public domain W3C validator