![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mamucl | Structured version Visualization version GIF version |
Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
Ref | Expression |
---|---|
mamucl.b | ⊢ 𝐵 = (Base‘𝑅) |
mamucl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mamucl.f | ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) |
mamucl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
mamucl.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mamucl.p | ⊢ (𝜑 → 𝑃 ∈ Fin) |
mamucl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
mamucl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
Ref | Expression |
---|---|
mamucl | ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamucl.f | . . 3 ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) | |
2 | mamucl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | eqid 2736 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | mamucl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | mamucl.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
6 | mamucl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | mamucl.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Fin) | |
8 | mamucl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
9 | mamucl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mamuval 21735 | . 2 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))))) |
11 | ringcmn 20003 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
12 | 4, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
13 | 12 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑅 ∈ CMnd) |
14 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑁 ∈ Fin) |
15 | 4 | ad2antrr 724 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
16 | elmapi 8787 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) | |
17 | 8, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
18 | 17 | ad2antrr 724 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
19 | simplrl 775 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑀) | |
20 | simpr 485 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
21 | 18, 19, 20 | fovcdmd 7526 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
22 | elmapi 8787 | . . . . . . . . . 10 ⊢ (𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃)) → 𝑌:(𝑁 × 𝑃)⟶𝐵) | |
23 | 9, 22 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌:(𝑁 × 𝑃)⟶𝐵) |
24 | 23 | ad2antrr 724 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑌:(𝑁 × 𝑃)⟶𝐵) |
25 | simplrr 776 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑃) | |
26 | 24, 20, 25 | fovcdmd 7526 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑌𝑘) ∈ 𝐵) |
27 | 2, 3 | ringcl 19981 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
28 | 15, 21, 26, 27 | syl3anc 1371 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
29 | 28 | ralrimiva 3143 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → ∀𝑗 ∈ 𝑁 ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
30 | 2, 13, 14, 29 | gsummptcl 19744 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵) |
31 | 30 | ralrimivva 3197 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵) |
32 | eqid 2736 | . . . . 5 ⊢ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) | |
33 | 32 | fmpo 8000 | . . . 4 ⊢ (∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵) |
34 | 2 | fvexi 6856 | . . . . 5 ⊢ 𝐵 ∈ V |
35 | xpfi 9261 | . . . . . 6 ⊢ ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin) | |
36 | 5, 7, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀 × 𝑃) ∈ Fin) |
37 | elmapg 8778 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑃) ∈ Fin) → ((𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)) ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)) | |
38 | 34, 36, 37 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)) ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)) |
39 | 33, 38 | bitr4id 289 | . . 3 ⊢ (𝜑 → (∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)))) |
40 | 31, 39 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
41 | 10, 40 | eqeltrd 2838 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3064 Vcvv 3445 〈cotp 4594 ↦ cmpt 5188 × cxp 5631 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ∈ cmpo 7359 ↑m cmap 8765 Fincfn 8883 Basecbs 17083 .rcmulr 17134 Σg cgsu 17322 CMndccmn 19562 Ringcrg 19964 maMul cmmul 21732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-ot 4595 df-uni 4866 df-int 4908 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-oi 9446 df-card 9875 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-n0 12414 df-z 12500 df-uz 12764 df-fz 13425 df-fzo 13568 df-seq 13907 df-hash 14231 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-0g 17323 df-gsum 17324 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-grp 18751 df-minusg 18752 df-cntz 19097 df-cmn 19564 df-abl 19565 df-mgp 19897 df-ur 19914 df-ring 19966 df-mamu 21733 |
This theorem is referenced by: mamuass 21749 mamudi 21750 mamudir 21751 mamuvs1 21752 mamuvs2 21753 mamulid 21790 mamurid 21791 matring 21792 matassa 21793 mavmulass 21898 |
Copyright terms: Public domain | W3C validator |