![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mamucl | Structured version Visualization version GIF version |
Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
Ref | Expression |
---|---|
mamucl.b | ⊢ 𝐵 = (Base‘𝑅) |
mamucl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mamucl.f | ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) |
mamucl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
mamucl.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mamucl.p | ⊢ (𝜑 → 𝑃 ∈ Fin) |
mamucl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
mamucl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
Ref | Expression |
---|---|
mamucl | ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamucl.f | . . 3 ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) | |
2 | mamucl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | eqid 2734 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | mamucl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | mamucl.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
6 | mamucl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | mamucl.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Fin) | |
8 | mamucl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
9 | mamucl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mamuval 22412 | . 2 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))))) |
11 | ringcmn 20295 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
12 | 4, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑅 ∈ CMnd) |
14 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑁 ∈ Fin) |
15 | 4 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
16 | elmapi 8887 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) | |
17 | 8, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
18 | 17 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
19 | simplrl 777 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑀) | |
20 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
21 | 18, 19, 20 | fovcdmd 7604 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
22 | elmapi 8887 | . . . . . . . . . 10 ⊢ (𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃)) → 𝑌:(𝑁 × 𝑃)⟶𝐵) | |
23 | 9, 22 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌:(𝑁 × 𝑃)⟶𝐵) |
24 | 23 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑌:(𝑁 × 𝑃)⟶𝐵) |
25 | simplrr 778 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑃) | |
26 | 24, 20, 25 | fovcdmd 7604 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑌𝑘) ∈ 𝐵) |
27 | 2, 3 | ringcl 20267 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
28 | 15, 21, 26, 27 | syl3anc 1370 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
29 | 28 | ralrimiva 3143 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → ∀𝑗 ∈ 𝑁 ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
30 | 2, 13, 14, 29 | gsummptcl 19999 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵) |
31 | 30 | ralrimivva 3199 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵) |
32 | eqid 2734 | . . . . 5 ⊢ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) | |
33 | 32 | fmpo 8091 | . . . 4 ⊢ (∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵) |
34 | 2 | fvexi 6920 | . . . . 5 ⊢ 𝐵 ∈ V |
35 | xpfi 9355 | . . . . . 6 ⊢ ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin) | |
36 | 5, 7, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀 × 𝑃) ∈ Fin) |
37 | elmapg 8877 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑃) ∈ Fin) → ((𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)) ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)) | |
38 | 34, 36, 37 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)) ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)) |
39 | 33, 38 | bitr4id 290 | . . 3 ⊢ (𝜑 → (∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)))) |
40 | 31, 39 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
41 | 10, 40 | eqeltrd 2838 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∀wral 3058 Vcvv 3477 〈cotp 4638 ↦ cmpt 5230 × cxp 5686 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ∈ cmpo 7432 ↑m cmap 8864 Fincfn 8983 Basecbs 17244 .rcmulr 17298 Σg cgsu 17486 CMndccmn 19812 Ringcrg 20250 maMul cmmul 22409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-ot 4639 df-uni 4912 df-int 4951 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-er 8743 df-map 8866 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-n0 12524 df-z 12611 df-uz 12876 df-fz 13544 df-fzo 13691 df-seq 14039 df-hash 14366 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-plusg 17310 df-0g 17487 df-gsum 17488 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-cntz 19347 df-cmn 19814 df-abl 19815 df-mgp 20152 df-ur 20199 df-ring 20252 df-mamu 22410 |
This theorem is referenced by: mamuass 22421 mamudi 22422 mamudir 22423 mamuvs1 22424 mamuvs2 22425 mamulid 22462 mamurid 22463 matring 22464 matassa 22465 mavmulass 22570 |
Copyright terms: Public domain | W3C validator |