![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mamucl | Structured version Visualization version GIF version |
Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
Ref | Expression |
---|---|
mamucl.b | ⊢ 𝐵 = (Base‘𝑅) |
mamucl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mamucl.f | ⊢ 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩) |
mamucl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
mamucl.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mamucl.p | ⊢ (𝜑 → 𝑃 ∈ Fin) |
mamucl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
mamucl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
Ref | Expression |
---|---|
mamucl | ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamucl.f | . . 3 ⊢ 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩) | |
2 | mamucl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | eqid 2732 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | mamucl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | mamucl.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
6 | mamucl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | mamucl.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Fin) | |
8 | mamucl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
9 | mamucl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mamuval 21887 | . 2 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))))) |
11 | ringcmn 20098 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
12 | 4, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
13 | 12 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑅 ∈ CMnd) |
14 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑁 ∈ Fin) |
15 | 4 | ad2antrr 724 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
16 | elmapi 8842 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) | |
17 | 8, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
18 | 17 | ad2antrr 724 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
19 | simplrl 775 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑀) | |
20 | simpr 485 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
21 | 18, 19, 20 | fovcdmd 7578 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
22 | elmapi 8842 | . . . . . . . . . 10 ⊢ (𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃)) → 𝑌:(𝑁 × 𝑃)⟶𝐵) | |
23 | 9, 22 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌:(𝑁 × 𝑃)⟶𝐵) |
24 | 23 | ad2antrr 724 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑌:(𝑁 × 𝑃)⟶𝐵) |
25 | simplrr 776 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑃) | |
26 | 24, 20, 25 | fovcdmd 7578 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑌𝑘) ∈ 𝐵) |
27 | 2, 3 | ringcl 20072 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
28 | 15, 21, 26, 27 | syl3anc 1371 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
29 | 28 | ralrimiva 3146 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → ∀𝑗 ∈ 𝑁 ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
30 | 2, 13, 14, 29 | gsummptcl 19834 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵) |
31 | 30 | ralrimivva 3200 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵) |
32 | eqid 2732 | . . . . 5 ⊢ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) | |
33 | 32 | fmpo 8053 | . . . 4 ⊢ (∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵) |
34 | 2 | fvexi 6905 | . . . . 5 ⊢ 𝐵 ∈ V |
35 | xpfi 9316 | . . . . . 6 ⊢ ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin) | |
36 | 5, 7, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀 × 𝑃) ∈ Fin) |
37 | elmapg 8832 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑃) ∈ Fin) → ((𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)) ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)) | |
38 | 34, 36, 37 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)) ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)) |
39 | 33, 38 | bitr4id 289 | . . 3 ⊢ (𝜑 → (∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)))) |
40 | 31, 39 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
41 | 10, 40 | eqeltrd 2833 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ⟨cotp 4636 ↦ cmpt 5231 × cxp 5674 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ∈ cmpo 7410 ↑m cmap 8819 Fincfn 8938 Basecbs 17143 .rcmulr 17197 Σg cgsu 17385 CMndccmn 19647 Ringcrg 20055 maMul cmmul 21884 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-supp 8146 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-oi 9504 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-z 12558 df-uz 12822 df-fz 13484 df-fzo 13627 df-seq 13966 df-hash 14290 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-0g 17386 df-gsum 17387 df-mgm 18560 df-sgrp 18609 df-mnd 18625 df-grp 18821 df-minusg 18822 df-cntz 19180 df-cmn 19649 df-abl 19650 df-mgp 19987 df-ur 20004 df-ring 20057 df-mamu 21885 |
This theorem is referenced by: mamuass 21901 mamudi 21902 mamudir 21903 mamuvs1 21904 mamuvs2 21905 mamulid 21942 mamurid 21943 matring 21944 matassa 21945 mavmulass 22050 |
Copyright terms: Public domain | W3C validator |