MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamucl Structured version   Visualization version   GIF version

Theorem mamucl 22321
Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamucl.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamucl.m (𝜑𝑀 ∈ Fin)
mamucl.n (𝜑𝑁 ∈ Fin)
mamucl.p (𝜑𝑃 ∈ Fin)
mamucl.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamucl.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
Assertion
Ref Expression
mamucl (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑃)))

Proof of Theorem mamucl
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.f . . 3 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 mamucl.b . . 3 𝐵 = (Base‘𝑅)
3 eqid 2728 . . 3 (.r𝑅) = (.r𝑅)
4 mamucl.r . . 3 (𝜑𝑅 ∈ Ring)
5 mamucl.m . . 3 (𝜑𝑀 ∈ Fin)
6 mamucl.n . . 3 (𝜑𝑁 ∈ Fin)
7 mamucl.p . . 3 (𝜑𝑃 ∈ Fin)
8 mamucl.x . . 3 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
9 mamucl.y . . 3 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
101, 2, 3, 4, 5, 6, 7, 8, 9mamuval 22308 . 2 (𝜑 → (𝑋𝐹𝑌) = (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))))
11 ringcmn 20225 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
124, 11syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
1312adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ CMnd)
146adantr 479 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑁 ∈ Fin)
154ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
16 elmapi 8874 . . . . . . . . . 10 (𝑋 ∈ (𝐵m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
178, 16syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1817ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
19 simplrl 775 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑖𝑀)
20 simpr 483 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑗𝑁)
2118, 19, 20fovcdmd 7599 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
22 elmapi 8874 . . . . . . . . . 10 (𝑌 ∈ (𝐵m (𝑁 × 𝑃)) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
239, 22syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑁 × 𝑃)⟶𝐵)
2423ad2antrr 724 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
25 simplrr 776 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑘𝑃)
2624, 20, 25fovcdmd 7599 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → (𝑗𝑌𝑘) ∈ 𝐵)
272, 3ringcl 20197 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
2815, 21, 26, 27syl3anc 1368 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
2928ralrimiva 3143 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → ∀𝑗𝑁 ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
302, 13, 14, 29gsummptcl 19929 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵)
3130ralrimivva 3198 . . 3 (𝜑 → ∀𝑖𝑀𝑘𝑃 (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵)
32 eqid 2728 . . . . 5 (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))) = (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))))
3332fmpo 8078 . . . 4 (∀𝑖𝑀𝑘𝑃 (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)
342fvexi 6916 . . . . 5 𝐵 ∈ V
35 xpfi 9349 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin)
365, 7, 35syl2anc 582 . . . . 5 (𝜑 → (𝑀 × 𝑃) ∈ Fin)
37 elmapg 8864 . . . . 5 ((𝐵 ∈ V ∧ (𝑀 × 𝑃) ∈ Fin) → ((𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵m (𝑀 × 𝑃)) ↔ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵))
3834, 36, 37sylancr 585 . . . 4 (𝜑 → ((𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵m (𝑀 × 𝑃)) ↔ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵))
3933, 38bitr4id 289 . . 3 (𝜑 → (∀𝑖𝑀𝑘𝑃 (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵m (𝑀 × 𝑃))))
4031, 39mpbid 231 . 2 (𝜑 → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵m (𝑀 × 𝑃)))
4110, 40eqeltrd 2829 1 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵m (𝑀 × 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  wral 3058  Vcvv 3473  cotp 4640  cmpt 5235   × cxp 5680  wf 6549  cfv 6553  (class class class)co 7426  cmpo 7428  m cmap 8851  Fincfn 8970  Basecbs 17187  .rcmulr 17241   Σg cgsu 17429  CMndccmn 19742  Ringcrg 20180   maMul cmmul 22305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-ot 4641  df-uni 4913  df-int 4954  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-er 8731  df-map 8853  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-oi 9541  df-card 9970  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12251  df-2 12313  df-n0 12511  df-z 12597  df-uz 12861  df-fz 13525  df-fzo 13668  df-seq 14007  df-hash 14330  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-plusg 17253  df-0g 17430  df-gsum 17431  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-grp 18900  df-minusg 18901  df-cntz 19275  df-cmn 19744  df-abl 19745  df-mgp 20082  df-ur 20129  df-ring 20182  df-mamu 22306
This theorem is referenced by:  mamuass  22322  mamudi  22323  mamudir  22324  mamuvs1  22325  mamuvs2  22326  mamulid  22363  mamurid  22364  matring  22365  matassa  22366  mavmulass  22471
  Copyright terms: Public domain W3C validator