MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamucl Structured version   Visualization version   GIF version

Theorem mamucl 20529
Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamucl.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamucl.m (𝜑𝑀 ∈ Fin)
mamucl.n (𝜑𝑁 ∈ Fin)
mamucl.p (𝜑𝑃 ∈ Fin)
mamucl.x (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamucl.y (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑃)))
Assertion
Ref Expression
mamucl (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑃)))

Proof of Theorem mamucl
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.f . . 3 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 mamucl.b . . 3 𝐵 = (Base‘𝑅)
3 eqid 2797 . . 3 (.r𝑅) = (.r𝑅)
4 mamucl.r . . 3 (𝜑𝑅 ∈ Ring)
5 mamucl.m . . 3 (𝜑𝑀 ∈ Fin)
6 mamucl.n . . 3 (𝜑𝑁 ∈ Fin)
7 mamucl.p . . 3 (𝜑𝑃 ∈ Fin)
8 mamucl.x . . 3 (𝜑𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
9 mamucl.y . . 3 (𝜑𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑃)))
101, 2, 3, 4, 5, 6, 7, 8, 9mamuval 20514 . 2 (𝜑 → (𝑋𝐹𝑌) = (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))))
11 ringcmn 18894 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ CMnd)
124, 11syl 17 . . . . . 6 (𝜑𝑅 ∈ CMnd)
1312adantr 473 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑅 ∈ CMnd)
146adantr 473 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → 𝑁 ∈ Fin)
154ad2antrr 718 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
16 elmapi 8115 . . . . . . . . . 10 (𝑋 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
178, 16syl 17 . . . . . . . . 9 (𝜑𝑋:(𝑀 × 𝑁)⟶𝐵)
1817ad2antrr 718 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵)
19 simplrl 796 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑖𝑀)
20 simpr 478 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑗𝑁)
2118, 19, 20fovrnd 7038 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → (𝑖𝑋𝑗) ∈ 𝐵)
22 elmapi 8115 . . . . . . . . . 10 (𝑌 ∈ (𝐵𝑚 (𝑁 × 𝑃)) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
239, 22syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑁 × 𝑃)⟶𝐵)
2423ad2antrr 718 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑌:(𝑁 × 𝑃)⟶𝐵)
25 simplrr 797 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → 𝑘𝑃)
2624, 20, 25fovrnd 7038 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → (𝑗𝑌𝑘) ∈ 𝐵)
272, 3ringcl 18874 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
2815, 21, 26, 27syl3anc 1491 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑃)) ∧ 𝑗𝑁) → ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
2928ralrimiva 3145 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → ∀𝑗𝑁 ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)) ∈ 𝐵)
302, 13, 14, 29gsummptcl 18678 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑃)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵)
3130ralrimivva 3150 . . 3 (𝜑 → ∀𝑖𝑀𝑘𝑃 (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵)
322fvexi 6423 . . . . 5 𝐵 ∈ V
33 xpfi 8471 . . . . . 6 ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin)
345, 7, 33syl2anc 580 . . . . 5 (𝜑 → (𝑀 × 𝑃) ∈ Fin)
35 elmapg 8106 . . . . 5 ((𝐵 ∈ V ∧ (𝑀 × 𝑃) ∈ Fin) → ((𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵𝑚 (𝑀 × 𝑃)) ↔ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵))
3632, 34, 35sylancr 582 . . . 4 (𝜑 → ((𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵𝑚 (𝑀 × 𝑃)) ↔ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵))
37 eqid 2797 . . . . 5 (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))) = (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))))
3837fmpt2 7471 . . . 4 (∀𝑖𝑀𝑘𝑃 (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)
3936, 38syl6rbbr 282 . . 3 (𝜑 → (∀𝑖𝑀𝑘𝑃 (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵𝑚 (𝑀 × 𝑃))))
4031, 39mpbid 224 . 2 (𝜑 → (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗)(.r𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵𝑚 (𝑀 × 𝑃)))
4110, 40eqeltrd 2876 1 (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 385   = wceq 1653  wcel 2157  wral 3087  Vcvv 3383  cotp 4374  cmpt 4920   × cxp 5308  wf 6095  cfv 6099  (class class class)co 6876  cmpt2 6878  𝑚 cmap 8093  Fincfn 8193  Basecbs 16181  .rcmulr 16265   Σg cgsu 16413  CMndccmn 18505  Ringcrg 18860   maMul cmmul 20511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095  ax-un 7181  ax-cnex 10278  ax-resscn 10279  ax-1cn 10280  ax-icn 10281  ax-addcl 10282  ax-addrcl 10283  ax-mulcl 10284  ax-mulrcl 10285  ax-mulcom 10286  ax-addass 10287  ax-mulass 10288  ax-distr 10289  ax-i2m1 10290  ax-1ne0 10291  ax-1rid 10292  ax-rnegex 10293  ax-rrecex 10294  ax-cnre 10295  ax-pre-lttri 10296  ax-pre-lttrn 10297  ax-pre-ltadd 10298  ax-pre-mulgt0 10299
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-nel 3073  df-ral 3092  df-rex 3093  df-reu 3094  df-rmo 3095  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-pss 3783  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-tp 4371  df-op 4373  df-ot 4375  df-uni 4627  df-int 4666  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-tr 4944  df-id 5218  df-eprel 5223  df-po 5231  df-so 5232  df-fr 5269  df-se 5270  df-we 5271  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-pred 5896  df-ord 5942  df-on 5943  df-lim 5944  df-suc 5945  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-isom 6108  df-riota 6837  df-ov 6879  df-oprab 6880  df-mpt2 6881  df-om 7298  df-1st 7399  df-2nd 7400  df-supp 7531  df-wrecs 7643  df-recs 7705  df-rdg 7743  df-1o 7797  df-oadd 7801  df-er 7980  df-map 8095  df-en 8194  df-dom 8195  df-sdom 8196  df-fin 8197  df-fsupp 8516  df-oi 8655  df-card 9049  df-pnf 10363  df-mnf 10364  df-xr 10365  df-ltxr 10366  df-le 10367  df-sub 10556  df-neg 10557  df-nn 11311  df-2 11372  df-n0 11577  df-z 11663  df-uz 11927  df-fz 12577  df-fzo 12717  df-seq 13052  df-hash 13367  df-ndx 16184  df-slot 16185  df-base 16187  df-sets 16188  df-plusg 16277  df-0g 16414  df-gsum 16415  df-mgm 17554  df-sgrp 17596  df-mnd 17607  df-grp 17738  df-minusg 17739  df-cntz 18059  df-cmn 18507  df-abl 18508  df-mgp 18803  df-ur 18815  df-ring 18862  df-mamu 20512
This theorem is referenced by:  mamuass  20530  mamudi  20531  mamudir  20532  mamuvs1  20533  mamuvs2  20534  mamulid  20569  mamurid  20570  matring  20571  matassa  20572  mavmulass  20678
  Copyright terms: Public domain W3C validator