Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mamucl | Structured version Visualization version GIF version |
Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
Ref | Expression |
---|---|
mamucl.b | ⊢ 𝐵 = (Base‘𝑅) |
mamucl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mamucl.f | ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) |
mamucl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
mamucl.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mamucl.p | ⊢ (𝜑 → 𝑃 ∈ Fin) |
mamucl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
mamucl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
Ref | Expression |
---|---|
mamucl | ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mamucl.f | . . 3 ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) | |
2 | mamucl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
3 | eqid 2738 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
4 | mamucl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
5 | mamucl.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
6 | mamucl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
7 | mamucl.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Fin) | |
8 | mamucl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
9 | mamucl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mamuval 21535 | . 2 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))))) |
11 | ringcmn 19820 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
12 | 4, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
13 | 12 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑅 ∈ CMnd) |
14 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑁 ∈ Fin) |
15 | 4 | ad2antrr 723 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
16 | elmapi 8637 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) | |
17 | 8, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
18 | 17 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
19 | simplrl 774 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑀) | |
20 | simpr 485 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
21 | 18, 19, 20 | fovrnd 7444 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
22 | elmapi 8637 | . . . . . . . . . 10 ⊢ (𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃)) → 𝑌:(𝑁 × 𝑃)⟶𝐵) | |
23 | 9, 22 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌:(𝑁 × 𝑃)⟶𝐵) |
24 | 23 | ad2antrr 723 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑌:(𝑁 × 𝑃)⟶𝐵) |
25 | simplrr 775 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑃) | |
26 | 24, 20, 25 | fovrnd 7444 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑌𝑘) ∈ 𝐵) |
27 | 2, 3 | ringcl 19800 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
28 | 15, 21, 26, 27 | syl3anc 1370 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
29 | 28 | ralrimiva 3103 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → ∀𝑗 ∈ 𝑁 ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
30 | 2, 13, 14, 29 | gsummptcl 19568 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵) |
31 | 30 | ralrimivva 3123 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵) |
32 | eqid 2738 | . . . . 5 ⊢ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) | |
33 | 32 | fmpo 7908 | . . . 4 ⊢ (∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵) |
34 | 2 | fvexi 6788 | . . . . 5 ⊢ 𝐵 ∈ V |
35 | xpfi 9085 | . . . . . 6 ⊢ ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin) | |
36 | 5, 7, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀 × 𝑃) ∈ Fin) |
37 | elmapg 8628 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑃) ∈ Fin) → ((𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)) ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)) | |
38 | 34, 36, 37 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)) ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)) |
39 | 33, 38 | bitr4id 290 | . . 3 ⊢ (𝜑 → (∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)))) |
40 | 31, 39 | mpbid 231 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
41 | 10, 40 | eqeltrd 2839 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 Vcvv 3432 〈cotp 4569 ↦ cmpt 5157 × cxp 5587 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∈ cmpo 7277 ↑m cmap 8615 Fincfn 8733 Basecbs 16912 .rcmulr 16963 Σg cgsu 17151 CMndccmn 19386 Ringcrg 19783 maMul cmmul 21532 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-z 12320 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-plusg 16975 df-0g 17152 df-gsum 17153 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-grp 18580 df-minusg 18581 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-mamu 21533 |
This theorem is referenced by: mamuass 21549 mamudi 21550 mamudir 21551 mamuvs1 21552 mamuvs2 21553 mamulid 21590 mamurid 21591 matring 21592 matassa 21593 mavmulass 21698 |
Copyright terms: Public domain | W3C validator |