| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mamucl | Structured version Visualization version GIF version | ||
| Description: Operation closure of matrix multiplication. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| mamucl.b | ⊢ 𝐵 = (Base‘𝑅) |
| mamucl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| mamucl.f | ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) |
| mamucl.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
| mamucl.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mamucl.p | ⊢ (𝜑 → 𝑃 ∈ Fin) |
| mamucl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
| mamucl.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
| Ref | Expression |
|---|---|
| mamucl | ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamucl.f | . . 3 ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) | |
| 2 | mamucl.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | eqid 2735 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 4 | mamucl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 5 | mamucl.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
| 6 | mamucl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 7 | mamucl.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Fin) | |
| 8 | mamucl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
| 9 | mamucl.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mamuval 22331 | . 2 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))))) |
| 11 | ringcmn 20242 | . . . . . . 7 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ CMnd) | |
| 12 | 4, 11 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| 13 | 12 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑅 ∈ CMnd) |
| 14 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → 𝑁 ∈ Fin) |
| 15 | 4 | ad2antrr 726 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑅 ∈ Ring) |
| 16 | elmapi 8863 | . . . . . . . . . 10 ⊢ (𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁)) → 𝑋:(𝑀 × 𝑁)⟶𝐵) | |
| 17 | 8, 16 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 18 | 17 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑋:(𝑀 × 𝑁)⟶𝐵) |
| 19 | simplrl 776 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑀) | |
| 20 | simpr 484 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) | |
| 21 | 18, 19, 20 | fovcdmd 7579 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → (𝑖𝑋𝑗) ∈ 𝐵) |
| 22 | elmapi 8863 | . . . . . . . . . 10 ⊢ (𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃)) → 𝑌:(𝑁 × 𝑃)⟶𝐵) | |
| 23 | 9, 22 | syl 17 | . . . . . . . . 9 ⊢ (𝜑 → 𝑌:(𝑁 × 𝑃)⟶𝐵) |
| 24 | 23 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑌:(𝑁 × 𝑃)⟶𝐵) |
| 25 | simplrr 777 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → 𝑘 ∈ 𝑃) | |
| 26 | 24, 20, 25 | fovcdmd 7579 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → (𝑗𝑌𝑘) ∈ 𝐵) |
| 27 | 2, 3 | ringcl 20210 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑖𝑋𝑗) ∈ 𝐵 ∧ (𝑗𝑌𝑘) ∈ 𝐵) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
| 28 | 15, 21, 26, 27 | syl3anc 1373 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) ∧ 𝑗 ∈ 𝑁) → ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
| 29 | 28 | ralrimiva 3132 | . . . . 5 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → ∀𝑗 ∈ 𝑁 ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)) ∈ 𝐵) |
| 30 | 2, 13, 14, 29 | gsummptcl 19948 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 ∈ 𝑀 ∧ 𝑘 ∈ 𝑃)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵) |
| 31 | 30 | ralrimivva 3187 | . . 3 ⊢ (𝜑 → ∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵) |
| 32 | eqid 2735 | . . . . 5 ⊢ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) | |
| 33 | 32 | fmpo 8067 | . . . 4 ⊢ (∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵) |
| 34 | 2 | fvexi 6890 | . . . . 5 ⊢ 𝐵 ∈ V |
| 35 | xpfi 9330 | . . . . . 6 ⊢ ((𝑀 ∈ Fin ∧ 𝑃 ∈ Fin) → (𝑀 × 𝑃) ∈ Fin) | |
| 36 | 5, 7, 35 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → (𝑀 × 𝑃) ∈ Fin) |
| 37 | elmapg 8853 | . . . . 5 ⊢ ((𝐵 ∈ V ∧ (𝑀 × 𝑃) ∈ Fin) → ((𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)) ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)) | |
| 38 | 34, 36, 37 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)) ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))):(𝑀 × 𝑃)⟶𝐵)) |
| 39 | 33, 38 | bitr4id 290 | . . 3 ⊢ (𝜑 → (∀𝑖 ∈ 𝑀 ∀𝑘 ∈ 𝑃 (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘)))) ∈ 𝐵 ↔ (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃)))) |
| 40 | 31, 39 | mpbid 232 | . 2 ⊢ (𝜑 → (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗)(.r‘𝑅)(𝑗𝑌𝑘))))) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
| 41 | 10, 40 | eqeltrd 2834 | 1 ⊢ (𝜑 → (𝑋𝐹𝑌) ∈ (𝐵 ↑m (𝑀 × 𝑃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3051 Vcvv 3459 〈cotp 4609 ↦ cmpt 5201 × cxp 5652 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 ↑m cmap 8840 Fincfn 8959 Basecbs 17228 .rcmulr 17272 Σg cgsu 17454 CMndccmn 19761 Ringcrg 20193 maMul cmmul 22328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-ot 4610 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-supp 8160 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fsupp 9374 df-oi 9524 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-z 12589 df-uz 12853 df-fz 13525 df-fzo 13672 df-seq 14020 df-hash 14349 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-0g 17455 df-gsum 17456 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-cntz 19300 df-cmn 19763 df-abl 19764 df-mgp 20101 df-ur 20142 df-ring 20195 df-mamu 22329 |
| This theorem is referenced by: mamuass 22340 mamudi 22341 mamudir 22342 mamuvs1 22343 mamuvs2 22344 mamulid 22379 mamurid 22380 matring 22381 matassa 22382 mavmulass 22487 |
| Copyright terms: Public domain | W3C validator |