| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mamufv | Structured version Visualization version GIF version | ||
| Description: A cell in the multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.) |
| Ref | Expression |
|---|---|
| mamufval.f | ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) |
| mamufval.b | ⊢ 𝐵 = (Base‘𝑅) |
| mamufval.t | ⊢ · = (.r‘𝑅) |
| mamufval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| mamufval.m | ⊢ (𝜑 → 𝑀 ∈ Fin) |
| mamufval.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mamufval.p | ⊢ (𝜑 → 𝑃 ∈ Fin) |
| mamuval.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) |
| mamuval.y | ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) |
| mamufv.i | ⊢ (𝜑 → 𝐼 ∈ 𝑀) |
| mamufv.k | ⊢ (𝜑 → 𝐾 ∈ 𝑃) |
| Ref | Expression |
|---|---|
| mamufv | ⊢ (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mamufval.f | . . 3 ⊢ 𝐹 = (𝑅 maMul 〈𝑀, 𝑁, 𝑃〉) | |
| 2 | mamufval.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | mamufval.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 4 | mamufval.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 5 | mamufval.m | . . 3 ⊢ (𝜑 → 𝑀 ∈ Fin) | |
| 6 | mamufval.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 7 | mamufval.p | . . 3 ⊢ (𝜑 → 𝑃 ∈ Fin) | |
| 8 | mamuval.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m (𝑀 × 𝑁))) | |
| 9 | mamuval.y | . . 3 ⊢ (𝜑 → 𝑌 ∈ (𝐵 ↑m (𝑁 × 𝑃))) | |
| 10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mamuval 22313 | . 2 ⊢ (𝜑 → (𝑋𝐹𝑌) = (𝑖 ∈ 𝑀, 𝑘 ∈ 𝑃 ↦ (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))))) |
| 11 | oveq1 7376 | . . . . . 6 ⊢ (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗)) | |
| 12 | oveq2 7377 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑗𝑌𝑘) = (𝑗𝑌𝐾)) | |
| 13 | 11, 12 | oveqan12d 7388 | . . . . 5 ⊢ ((𝑖 = 𝐼 ∧ 𝑘 = 𝐾) → ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)) = ((𝐼𝑋𝑗) · (𝑗𝑌𝐾))) |
| 14 | 13 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑘 = 𝐾)) → ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)) = ((𝐼𝑋𝑗) · (𝑗𝑌𝐾))) |
| 15 | 14 | mpteq2dv 5196 | . . 3 ⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑘 = 𝐾)) → (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) = (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))) |
| 16 | 15 | oveq2d 7385 | . 2 ⊢ ((𝜑 ∧ (𝑖 = 𝐼 ∧ 𝑘 = 𝐾)) → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾))))) |
| 17 | mamufv.i | . 2 ⊢ (𝜑 → 𝐼 ∈ 𝑀) | |
| 18 | mamufv.k | . 2 ⊢ (𝜑 → 𝐾 ∈ 𝑃) | |
| 19 | ovexd 7404 | . 2 ⊢ (𝜑 → (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))) ∈ V) | |
| 20 | 10, 16, 17, 18, 19 | ovmpod 7521 | 1 ⊢ (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗 ∈ 𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 〈cotp 4593 ↦ cmpt 5183 × cxp 5629 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 Basecbs 17155 .rcmulr 17197 Σg cgsu 17379 maMul cmmul 22310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-ot 4594 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1st 7947 df-2nd 7948 df-mamu 22311 |
| This theorem is referenced by: mamuass 22322 mamudi 22323 mamudir 22324 mamuvs1 22325 mamuvs2 22326 mamulid 22361 mamurid 22362 matmulcell 22365 mavmulass 22469 mvmumamul1 22474 mdetmul 22543 decpmatmullem 22691 matunitlindflem2 37604 |
| Copyright terms: Public domain | W3C validator |