MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamufv Structured version   Visualization version   GIF version

Theorem mamufv 22346
Description: A cell in the multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mamufval.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamufval.b 𝐵 = (Base‘𝑅)
mamufval.t · = (.r𝑅)
mamufval.r (𝜑𝑅𝑉)
mamufval.m (𝜑𝑀 ∈ Fin)
mamufval.n (𝜑𝑁 ∈ Fin)
mamufval.p (𝜑𝑃 ∈ Fin)
mamuval.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamuval.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
mamufv.i (𝜑𝐼𝑀)
mamufv.k (𝜑𝐾𝑃)
Assertion
Ref Expression
mamufv (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑁   𝑃,𝑗   𝑅,𝑗   𝑗,𝑋   𝑗,𝑌   𝜑,𝑗   𝑗,𝐼   𝑗,𝐾
Allowed substitution hints:   𝐵(𝑗)   · (𝑗)   𝐹(𝑗)   𝑉(𝑗)

Proof of Theorem mamufv
Dummy variables 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamufval.f . . 3 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 mamufval.b . . 3 𝐵 = (Base‘𝑅)
3 mamufval.t . . 3 · = (.r𝑅)
4 mamufval.r . . 3 (𝜑𝑅𝑉)
5 mamufval.m . . 3 (𝜑𝑀 ∈ Fin)
6 mamufval.n . . 3 (𝜑𝑁 ∈ Fin)
7 mamufval.p . . 3 (𝜑𝑃 ∈ Fin)
8 mamuval.x . . 3 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
9 mamuval.y . . 3 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
101, 2, 3, 4, 5, 6, 7, 8, 9mamuval 22345 . 2 (𝜑 → (𝑋𝐹𝑌) = (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))))
11 oveq1 7420 . . . . . 6 (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
12 oveq2 7421 . . . . . 6 (𝑘 = 𝐾 → (𝑗𝑌𝑘) = (𝑗𝑌𝐾))
1311, 12oveqan12d 7432 . . . . 5 ((𝑖 = 𝐼𝑘 = 𝐾) → ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)) = ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))
1413adantl 481 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)) = ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))
1514mpteq2dv 5224 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾))))
1615oveq2d 7429 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
17 mamufv.i . 2 (𝜑𝐼𝑀)
18 mamufv.k . 2 (𝜑𝐾𝑃)
19 ovexd 7448 . 2 (𝜑 → (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))) ∈ V)
2010, 16, 17, 18, 19ovmpod 7567 1 (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cotp 4614  cmpt 5205   × cxp 5663  cfv 6541  (class class class)co 7413  m cmap 8848  Fincfn 8967  Basecbs 17229  .rcmulr 17274   Σg cgsu 17456   maMul cmmul 22342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-ot 4615  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-mamu 22343
This theorem is referenced by:  mamuass  22354  mamudi  22355  mamudir  22356  mamuvs1  22357  mamuvs2  22358  mamulid  22395  mamurid  22396  matmulcell  22399  mavmulass  22503  mvmumamul1  22508  mdetmul  22577  decpmatmullem  22725  matunitlindflem2  37583
  Copyright terms: Public domain W3C validator