MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamufv Structured version   Visualization version   GIF version

Theorem mamufv 22314
Description: A cell in the multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mamufval.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamufval.b 𝐵 = (Base‘𝑅)
mamufval.t · = (.r𝑅)
mamufval.r (𝜑𝑅𝑉)
mamufval.m (𝜑𝑀 ∈ Fin)
mamufval.n (𝜑𝑁 ∈ Fin)
mamufval.p (𝜑𝑃 ∈ Fin)
mamuval.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamuval.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
mamufv.i (𝜑𝐼𝑀)
mamufv.k (𝜑𝐾𝑃)
Assertion
Ref Expression
mamufv (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑁   𝑃,𝑗   𝑅,𝑗   𝑗,𝑋   𝑗,𝑌   𝜑,𝑗   𝑗,𝐼   𝑗,𝐾
Allowed substitution hints:   𝐵(𝑗)   · (𝑗)   𝐹(𝑗)   𝑉(𝑗)

Proof of Theorem mamufv
Dummy variables 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamufval.f . . 3 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 mamufval.b . . 3 𝐵 = (Base‘𝑅)
3 mamufval.t . . 3 · = (.r𝑅)
4 mamufval.r . . 3 (𝜑𝑅𝑉)
5 mamufval.m . . 3 (𝜑𝑀 ∈ Fin)
6 mamufval.n . . 3 (𝜑𝑁 ∈ Fin)
7 mamufval.p . . 3 (𝜑𝑃 ∈ Fin)
8 mamuval.x . . 3 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
9 mamuval.y . . 3 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
101, 2, 3, 4, 5, 6, 7, 8, 9mamuval 22313 . 2 (𝜑 → (𝑋𝐹𝑌) = (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))))
11 oveq1 7376 . . . . . 6 (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
12 oveq2 7377 . . . . . 6 (𝑘 = 𝐾 → (𝑗𝑌𝑘) = (𝑗𝑌𝐾))
1311, 12oveqan12d 7388 . . . . 5 ((𝑖 = 𝐼𝑘 = 𝐾) → ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)) = ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))
1413adantl 481 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)) = ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))
1514mpteq2dv 5196 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾))))
1615oveq2d 7385 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
17 mamufv.i . 2 (𝜑𝐼𝑀)
18 mamufv.k . 2 (𝜑𝐾𝑃)
19 ovexd 7404 . 2 (𝜑 → (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))) ∈ V)
2010, 16, 17, 18, 19ovmpod 7521 1 (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cotp 4593  cmpt 5183   × cxp 5629  cfv 6499  (class class class)co 7369  m cmap 8776  Fincfn 8895  Basecbs 17155  .rcmulr 17197   Σg cgsu 17379   maMul cmmul 22310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-ot 4594  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-mamu 22311
This theorem is referenced by:  mamuass  22322  mamudi  22323  mamudir  22324  mamuvs1  22325  mamuvs2  22326  mamulid  22361  mamurid  22362  matmulcell  22365  mavmulass  22469  mvmumamul1  22474  mdetmul  22543  decpmatmullem  22691  matunitlindflem2  37604
  Copyright terms: Public domain W3C validator