MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamufv Structured version   Visualization version   GIF version

Theorem mamufv 21736
Description: A cell in the multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mamufval.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamufval.b 𝐵 = (Base‘𝑅)
mamufval.t · = (.r𝑅)
mamufval.r (𝜑𝑅𝑉)
mamufval.m (𝜑𝑀 ∈ Fin)
mamufval.n (𝜑𝑁 ∈ Fin)
mamufval.p (𝜑𝑃 ∈ Fin)
mamuval.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamuval.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
mamufv.i (𝜑𝐼𝑀)
mamufv.k (𝜑𝐾𝑃)
Assertion
Ref Expression
mamufv (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑁   𝑃,𝑗   𝑅,𝑗   𝑗,𝑋   𝑗,𝑌   𝜑,𝑗   𝑗,𝐼   𝑗,𝐾
Allowed substitution hints:   𝐵(𝑗)   · (𝑗)   𝐹(𝑗)   𝑉(𝑗)

Proof of Theorem mamufv
Dummy variables 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamufval.f . . 3 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 mamufval.b . . 3 𝐵 = (Base‘𝑅)
3 mamufval.t . . 3 · = (.r𝑅)
4 mamufval.r . . 3 (𝜑𝑅𝑉)
5 mamufval.m . . 3 (𝜑𝑀 ∈ Fin)
6 mamufval.n . . 3 (𝜑𝑁 ∈ Fin)
7 mamufval.p . . 3 (𝜑𝑃 ∈ Fin)
8 mamuval.x . . 3 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
9 mamuval.y . . 3 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
101, 2, 3, 4, 5, 6, 7, 8, 9mamuval 21735 . 2 (𝜑 → (𝑋𝐹𝑌) = (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))))
11 oveq1 7364 . . . . . 6 (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
12 oveq2 7365 . . . . . 6 (𝑘 = 𝐾 → (𝑗𝑌𝑘) = (𝑗𝑌𝐾))
1311, 12oveqan12d 7376 . . . . 5 ((𝑖 = 𝐼𝑘 = 𝐾) → ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)) = ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))
1413adantl 482 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)) = ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))
1514mpteq2dv 5207 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾))))
1615oveq2d 7373 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
17 mamufv.i . 2 (𝜑𝐼𝑀)
18 mamufv.k . 2 (𝜑𝐾𝑃)
19 ovexd 7392 . 2 (𝜑 → (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))) ∈ V)
2010, 16, 17, 18, 19ovmpod 7507 1 (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  Vcvv 3445  cotp 4594  cmpt 5188   × cxp 5631  cfv 6496  (class class class)co 7357  m cmap 8765  Fincfn 8883  Basecbs 17083  .rcmulr 17134   Σg cgsu 17322   maMul cmmul 21732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-ot 4595  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-id 5531  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-ov 7360  df-oprab 7361  df-mpo 7362  df-1st 7921  df-2nd 7922  df-mamu 21733
This theorem is referenced by:  mamuass  21749  mamudi  21750  mamudir  21751  mamuvs1  21752  mamuvs2  21753  mamulid  21790  mamurid  21791  matmulcell  21794  mavmulass  21898  mvmumamul1  21903  mdetmul  21972  decpmatmullem  22120  matunitlindflem2  36075
  Copyright terms: Public domain W3C validator