MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamufv Structured version   Visualization version   GIF version

Theorem mamufv 21446
Description: A cell in the multiplication of two matrices. (Contributed by Stefan O'Rear, 2-Sep-2015.)
Hypotheses
Ref Expression
mamufval.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
mamufval.b 𝐵 = (Base‘𝑅)
mamufval.t · = (.r𝑅)
mamufval.r (𝜑𝑅𝑉)
mamufval.m (𝜑𝑀 ∈ Fin)
mamufval.n (𝜑𝑁 ∈ Fin)
mamufval.p (𝜑𝑃 ∈ Fin)
mamuval.x (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
mamuval.y (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
mamufv.i (𝜑𝐼𝑀)
mamufv.k (𝜑𝐾𝑃)
Assertion
Ref Expression
mamufv (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
Distinct variable groups:   𝑗,𝑀   𝑗,𝑁   𝑃,𝑗   𝑅,𝑗   𝑗,𝑋   𝑗,𝑌   𝜑,𝑗   𝑗,𝐼   𝑗,𝐾
Allowed substitution hints:   𝐵(𝑗)   · (𝑗)   𝐹(𝑗)   𝑉(𝑗)

Proof of Theorem mamufv
Dummy variables 𝑖 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamufval.f . . 3 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑃⟩)
2 mamufval.b . . 3 𝐵 = (Base‘𝑅)
3 mamufval.t . . 3 · = (.r𝑅)
4 mamufval.r . . 3 (𝜑𝑅𝑉)
5 mamufval.m . . 3 (𝜑𝑀 ∈ Fin)
6 mamufval.n . . 3 (𝜑𝑁 ∈ Fin)
7 mamufval.p . . 3 (𝜑𝑃 ∈ Fin)
8 mamuval.x . . 3 (𝜑𝑋 ∈ (𝐵m (𝑀 × 𝑁)))
9 mamuval.y . . 3 (𝜑𝑌 ∈ (𝐵m (𝑁 × 𝑃)))
101, 2, 3, 4, 5, 6, 7, 8, 9mamuval 21445 . 2 (𝜑 → (𝑋𝐹𝑌) = (𝑖𝑀, 𝑘𝑃 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))))))
11 oveq1 7262 . . . . . 6 (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
12 oveq2 7263 . . . . . 6 (𝑘 = 𝐾 → (𝑗𝑌𝑘) = (𝑗𝑌𝐾))
1311, 12oveqan12d 7274 . . . . 5 ((𝑖 = 𝐼𝑘 = 𝐾) → ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)) = ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))
1413adantl 481 . . . 4 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)) = ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))
1514mpteq2dv 5172 . . 3 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘))) = (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾))))
1615oveq2d 7271 . 2 ((𝜑 ∧ (𝑖 = 𝐼𝑘 = 𝐾)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑗𝑌𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
17 mamufv.i . 2 (𝜑𝐼𝑀)
18 mamufv.k . 2 (𝜑𝐾𝑃)
19 ovexd 7290 . 2 (𝜑 → (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))) ∈ V)
2010, 16, 17, 18, 19ovmpod 7403 1 (𝜑 → (𝐼(𝑋𝐹𝑌)𝐾) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑗𝑌𝐾)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cotp 4566  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  m cmap 8573  Fincfn 8691  Basecbs 16840  .rcmulr 16889   Σg cgsu 17068   maMul cmmul 21442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-ot 4567  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-mamu 21443
This theorem is referenced by:  mamuass  21459  mamudi  21460  mamudir  21461  mamuvs1  21462  mamuvs2  21463  mamulid  21498  mamurid  21499  matmulcell  21502  mavmulass  21606  mvmumamul1  21611  mdetmul  21680  decpmatmullem  21828  matunitlindflem2  35701
  Copyright terms: Public domain W3C validator