Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelaxreplem3 Structured version   Visualization version   GIF version

Theorem modelaxreplem3 44963
Description: Lemma for modelaxrep 44964. We show that the consequent of Replacement is satisfied with ran 𝐹 as the value of 𝑦. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypotheses
Ref Expression
modelaxreplem.1 (𝜓𝑥𝑀)
modelaxreplem.2 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
modelaxreplem.3 (𝜓 → ∅ ∈ 𝑀)
modelaxreplem.4 (𝜓𝑥𝑀)
modelaxreplem2.5 𝑤𝜓
modelaxreplem2.6 𝑧𝜓
modelaxreplem2.7 𝑧𝐹
modelaxreplem2.8 𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
modelaxreplem2.9 (𝜓 → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
Assertion
Ref Expression
modelaxreplem3 (𝜓 → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
Distinct variable groups:   𝑦,𝑧,𝑤,𝑀   𝑓,𝐹   𝑓,𝑀   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑓)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑓)   𝐹(𝑥,𝑦,𝑧,𝑤)   𝑀(𝑥)

Proof of Theorem modelaxreplem3
StepHypRef Expression
1 modelaxreplem.1 . . 3 (𝜓𝑥𝑀)
2 modelaxreplem.2 . . 3 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
3 modelaxreplem.3 . . 3 (𝜓 → ∅ ∈ 𝑀)
4 modelaxreplem.4 . . 3 (𝜓𝑥𝑀)
5 modelaxreplem2.5 . . 3 𝑤𝜓
6 modelaxreplem2.6 . . 3 𝑧𝜓
7 modelaxreplem2.7 . . 3 𝑧𝐹
8 modelaxreplem2.8 . . 3 𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
9 modelaxreplem2.9 . . 3 (𝜓 → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
101, 2, 3, 4, 5, 6, 7, 8, 9modelaxreplem2 44962 . 2 (𝜓 → ran 𝐹𝑀)
111sseld 3942 . . . . . . . . . 10 (𝜓 → (𝑤𝑥𝑤𝑀))
1211pm4.71rd 562 . . . . . . . . 9 (𝜓 → (𝑤𝑥 ↔ (𝑤𝑀𝑤𝑥)))
1312anbi1d 631 . . . . . . . 8 (𝜓 → ((𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)) ↔ ((𝑤𝑀𝑤𝑥) ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))))
14 an12 645 . . . . . . . . 9 (((𝑤𝑀𝑤𝑥) ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑀 ∧ ((𝑤𝑀𝑤𝑥) ∧ ∀𝑦𝜑)))
15 anass 468 . . . . . . . . . 10 (((𝑤𝑀𝑤𝑥) ∧ ∀𝑦𝜑) ↔ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑)))
1615anbi2i 623 . . . . . . . . 9 ((𝑧𝑀 ∧ ((𝑤𝑀𝑤𝑥) ∧ ∀𝑦𝜑)) ↔ (𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))))
1714, 16bitri 275 . . . . . . . 8 (((𝑤𝑀𝑤𝑥) ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))))
1813, 17bitrdi 287 . . . . . . 7 (𝜓 → ((𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑)))))
195, 18exbid 2224 . . . . . 6 (𝜓 → (∃𝑤(𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)) ↔ ∃𝑤(𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑)))))
208rneqi 5890 . . . . . . . 8 ran 𝐹 = ran {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
21 rnopab 5907 . . . . . . . 8 ran {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))} = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
2220, 21eqtri 2752 . . . . . . 7 ran 𝐹 = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
2322eqabri 2871 . . . . . 6 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤(𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)))
24 df-rex 3054 . . . . . . . 8 (∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑) ↔ ∃𝑤(𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑)))
2524anbi2i 623 . . . . . . 7 ((𝑧𝑀 ∧ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑀 ∧ ∃𝑤(𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))))
26 19.42v 1953 . . . . . . 7 (∃𝑤(𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))) ↔ (𝑧𝑀 ∧ ∃𝑤(𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))))
2725, 26bitr4i 278 . . . . . 6 ((𝑧𝑀 ∧ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∃𝑤(𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))))
2819, 23, 273bitr4g 314 . . . . 5 (𝜓 → (𝑧 ∈ ran 𝐹 ↔ (𝑧𝑀 ∧ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
2928baibd 539 . . . 4 ((𝜓𝑧𝑀) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
306, 29ralrimia 3234 . . 3 (𝜓 → ∀𝑧𝑀 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
317nfrn 5905 . . . . . 6 𝑧ran 𝐹
32 sbcralt 3832 . . . . . 6 ((ran 𝐹𝑀𝑧ran 𝐹) → ([ran 𝐹 / 𝑦]𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧𝑀 [ran 𝐹 / 𝑦](𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
3331, 32mpan2 691 . . . . 5 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦]𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧𝑀 [ran 𝐹 / 𝑦](𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
3431nfel1 2908 . . . . . 6 𝑧ran 𝐹𝑀
35 sbcbig 3802 . . . . . . 7 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦](𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ([ran 𝐹 / 𝑦]𝑧𝑦[ran 𝐹 / 𝑦]𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
36 sbcel2gv 3817 . . . . . . . 8 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦]𝑧𝑦𝑧 ∈ ran 𝐹))
37 nfcv 2891 . . . . . . . . . 10 𝑦𝑀
38 nfv 1914 . . . . . . . . . . 11 𝑦 𝑤𝑥
39 nfa1 2152 . . . . . . . . . . 11 𝑦𝑦𝜑
4038, 39nfan 1899 . . . . . . . . . 10 𝑦(𝑤𝑥 ∧ ∀𝑦𝜑)
4137, 40nfrexw 3284 . . . . . . . . 9 𝑦𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)
4241sbcgf 3821 . . . . . . . 8 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦]𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑) ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
4336, 42bibi12d 345 . . . . . . 7 (ran 𝐹𝑀 → (([ran 𝐹 / 𝑦]𝑧𝑦[ran 𝐹 / 𝑦]𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
4435, 43bitrd 279 . . . . . 6 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦](𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
4534, 44ralbid 3248 . . . . 5 (ran 𝐹𝑀 → (∀𝑧𝑀 [ran 𝐹 / 𝑦](𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧𝑀 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
4633, 45bitrd 279 . . . 4 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦]𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧𝑀 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
4710, 46syl 17 . . 3 (𝜓 → ([ran 𝐹 / 𝑦]𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧𝑀 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
4830, 47mpbird 257 . 2 (𝜓[ran 𝐹 / 𝑦]𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
4910, 48rspesbcd 44920 1 (𝜓 → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wnf 1783  wcel 2109  {cab 2707  wnfc 2876  wral 3044  wrex 3053  [wsbc 3750  wss 3911  c0 4292  {copab 5164  dom cdm 5631  ran crn 5632  Fun wfun 6493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-en 8896  df-dom 8897  df-sdom 8898
This theorem is referenced by:  modelaxrep  44964
  Copyright terms: Public domain W3C validator