Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelaxreplem3 Structured version   Visualization version   GIF version

Theorem modelaxreplem3 44932
Description: Lemma for modelaxrep 44933. We show that the consequent of Replacement is satisfied with ran 𝐹 as the value of 𝑦. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypotheses
Ref Expression
modelaxreplem.1 (𝜓𝑥𝑀)
modelaxreplem.2 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
modelaxreplem.3 (𝜓 → ∅ ∈ 𝑀)
modelaxreplem.4 (𝜓𝑥𝑀)
modelaxreplem2.5 𝑤𝜓
modelaxreplem2.6 𝑧𝜓
modelaxreplem2.7 𝑧𝐹
modelaxreplem2.8 𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
modelaxreplem2.9 (𝜓 → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
Assertion
Ref Expression
modelaxreplem3 (𝜓 → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
Distinct variable groups:   𝑦,𝑧,𝑤,𝑀   𝑓,𝐹   𝑓,𝑀   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤,𝑓)   𝜓(𝑥,𝑦,𝑧,𝑤,𝑓)   𝐹(𝑥,𝑦,𝑧,𝑤)   𝑀(𝑥)

Proof of Theorem modelaxreplem3
StepHypRef Expression
1 modelaxreplem.1 . . 3 (𝜓𝑥𝑀)
2 modelaxreplem.2 . . 3 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
3 modelaxreplem.3 . . 3 (𝜓 → ∅ ∈ 𝑀)
4 modelaxreplem.4 . . 3 (𝜓𝑥𝑀)
5 modelaxreplem2.5 . . 3 𝑤𝜓
6 modelaxreplem2.6 . . 3 𝑧𝜓
7 modelaxreplem2.7 . . 3 𝑧𝐹
8 modelaxreplem2.8 . . 3 𝐹 = {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
9 modelaxreplem2.9 . . 3 (𝜓 → (𝑤𝑀 → ∃𝑦𝑀𝑧𝑀 (∀𝑦𝜑𝑧 = 𝑦)))
101, 2, 3, 4, 5, 6, 7, 8, 9modelaxreplem2 44931 . 2 (𝜓 → ran 𝐹𝑀)
111sseld 3955 . . . . . . . . . 10 (𝜓 → (𝑤𝑥𝑤𝑀))
1211pm4.71rd 562 . . . . . . . . 9 (𝜓 → (𝑤𝑥 ↔ (𝑤𝑀𝑤𝑥)))
1312anbi1d 631 . . . . . . . 8 (𝜓 → ((𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)) ↔ ((𝑤𝑀𝑤𝑥) ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))))
14 an12 645 . . . . . . . . 9 (((𝑤𝑀𝑤𝑥) ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑀 ∧ ((𝑤𝑀𝑤𝑥) ∧ ∀𝑦𝜑)))
15 anass 468 . . . . . . . . . 10 (((𝑤𝑀𝑤𝑥) ∧ ∀𝑦𝜑) ↔ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑)))
1615anbi2i 623 . . . . . . . . 9 ((𝑧𝑀 ∧ ((𝑤𝑀𝑤𝑥) ∧ ∀𝑦𝜑)) ↔ (𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))))
1714, 16bitri 275 . . . . . . . 8 (((𝑤𝑀𝑤𝑥) ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))))
1813, 17bitrdi 287 . . . . . . 7 (𝜓 → ((𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑)))))
195, 18exbid 2222 . . . . . 6 (𝜓 → (∃𝑤(𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)) ↔ ∃𝑤(𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑)))))
208rneqi 5914 . . . . . . . 8 ran 𝐹 = ran {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
21 rnopab 5931 . . . . . . . 8 ran {⟨𝑤, 𝑧⟩ ∣ (𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))} = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
2220, 21eqtri 2757 . . . . . . 7 ran 𝐹 = {𝑧 ∣ ∃𝑤(𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑))}
2322eqabri 2877 . . . . . 6 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤(𝑤𝑥 ∧ (𝑧𝑀 ∧ ∀𝑦𝜑)))
24 df-rex 3060 . . . . . . . 8 (∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑) ↔ ∃𝑤(𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑)))
2524anbi2i 623 . . . . . . 7 ((𝑧𝑀 ∧ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ (𝑧𝑀 ∧ ∃𝑤(𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))))
26 19.42v 1952 . . . . . . 7 (∃𝑤(𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))) ↔ (𝑧𝑀 ∧ ∃𝑤(𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))))
2725, 26bitr4i 278 . . . . . 6 ((𝑧𝑀 ∧ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∃𝑤(𝑧𝑀 ∧ (𝑤𝑀 ∧ (𝑤𝑥 ∧ ∀𝑦𝜑))))
2819, 23, 273bitr4g 314 . . . . 5 (𝜓 → (𝑧 ∈ ran 𝐹 ↔ (𝑧𝑀 ∧ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
2928baibd 539 . . . 4 ((𝜓𝑧𝑀) → (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
306, 29ralrimia 3239 . . 3 (𝜓 → ∀𝑧𝑀 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
317nfrn 5929 . . . . . 6 𝑧ran 𝐹
32 sbcralt 3845 . . . . . 6 ((ran 𝐹𝑀𝑧ran 𝐹) → ([ran 𝐹 / 𝑦]𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧𝑀 [ran 𝐹 / 𝑦](𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
3331, 32mpan2 691 . . . . 5 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦]𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧𝑀 [ran 𝐹 / 𝑦](𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
3431nfel1 2914 . . . . . 6 𝑧ran 𝐹𝑀
35 sbcbig 3815 . . . . . . 7 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦](𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ([ran 𝐹 / 𝑦]𝑧𝑦[ran 𝐹 / 𝑦]𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
36 sbcel2gv 3830 . . . . . . . 8 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦]𝑧𝑦𝑧 ∈ ran 𝐹))
37 nfcv 2897 . . . . . . . . . 10 𝑦𝑀
38 nfv 1913 . . . . . . . . . . 11 𝑦 𝑤𝑥
39 nfa1 2150 . . . . . . . . . . 11 𝑦𝑦𝜑
4038, 39nfan 1898 . . . . . . . . . 10 𝑦(𝑤𝑥 ∧ ∀𝑦𝜑)
4137, 40nfrexw 3291 . . . . . . . . 9 𝑦𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)
4241sbcgf 3834 . . . . . . . 8 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦]𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑) ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
4336, 42bibi12d 345 . . . . . . 7 (ran 𝐹𝑀 → (([ran 𝐹 / 𝑦]𝑧𝑦[ran 𝐹 / 𝑦]𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
4435, 43bitrd 279 . . . . . 6 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦](𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
4534, 44ralbid 3253 . . . . 5 (ran 𝐹𝑀 → (∀𝑧𝑀 [ran 𝐹 / 𝑦](𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧𝑀 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
4633, 45bitrd 279 . . . 4 (ran 𝐹𝑀 → ([ran 𝐹 / 𝑦]𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧𝑀 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
4710, 46syl 17 . . 3 (𝜓 → ([ran 𝐹 / 𝑦]𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)) ↔ ∀𝑧𝑀 (𝑧 ∈ ran 𝐹 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑))))
4830, 47mpbird 257 . 2 (𝜓[ran 𝐹 / 𝑦]𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
4910, 48rspesbcd 44889 1 (𝜓 → ∃𝑦𝑀𝑧𝑀 (𝑧𝑦 ↔ ∃𝑤𝑀 (𝑤𝑥 ∧ ∀𝑦𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1537   = wceq 1539  wex 1778  wnf 1782  wcel 2107  {cab 2712  wnfc 2882  wral 3050  wrex 3059  [wsbc 3763  wss 3924  c0 4306  {copab 5178  dom cdm 5651  ran crn 5652  Fun wfun 6521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-iun 4966  df-br 5117  df-opab 5179  df-mpt 5199  df-id 5545  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-en 8954  df-dom 8955  df-sdom 8956
This theorem is referenced by:  modelaxrep  44933
  Copyright terms: Public domain W3C validator