MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddword1 Structured version   Visualization version   GIF version

Theorem naddword1 8692
Description: Weak-ordering principle for natural addition. (Contributed by Scott Fenton, 21-Jan-2025.)
Assertion
Ref Expression
naddword1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +no 𝐵))

Proof of Theorem naddword1
StepHypRef Expression
1 naddrid 8684 . . 3 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
21adantr 480 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no ∅) = 𝐴)
3 0ss 4391 . . 3 ∅ ⊆ 𝐵
4 0elon 6412 . . . . 5 ∅ ∈ On
5 naddss2 8691 . . . . 5 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +no ∅) ⊆ (𝐴 +no 𝐵)))
64, 5mp3an1 1444 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +no ∅) ⊆ (𝐴 +no 𝐵)))
76ancoms 458 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +no ∅) ⊆ (𝐴 +no 𝐵)))
83, 7mpbii 232 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no ∅) ⊆ (𝐴 +no 𝐵))
92, 8eqsstrrd 4016 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +no 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wss 3943  c0 4317  Oncon0 6358  (class class class)co 7405   +no cnadd 8666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-ov 7408  df-oprab 7409  df-mpo 7410  df-1st 7974  df-2nd 7975  df-frecs 8267  df-nadd 8667
This theorem is referenced by:  naddword2  8693  addsproplem2  27842
  Copyright terms: Public domain W3C validator