MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddword1 Structured version   Visualization version   GIF version

Theorem naddword1 8689
Description: Weak-ordering principle for natural addition. (Contributed by Scott Fenton, 21-Jan-2025.)
Assertion
Ref Expression
naddword1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +no 𝐵))

Proof of Theorem naddword1
StepHypRef Expression
1 naddrid 8681 . . 3 (𝐴 ∈ On → (𝐴 +no ∅) = 𝐴)
21adantr 481 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no ∅) = 𝐴)
3 0ss 4396 . . 3 ∅ ⊆ 𝐵
4 0elon 6418 . . . . 5 ∅ ∈ On
5 naddss2 8688 . . . . 5 ((∅ ∈ On ∧ 𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +no ∅) ⊆ (𝐴 +no 𝐵)))
64, 5mp3an1 1448 . . . 4 ((𝐵 ∈ On ∧ 𝐴 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +no ∅) ⊆ (𝐴 +no 𝐵)))
76ancoms 459 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (∅ ⊆ 𝐵 ↔ (𝐴 +no ∅) ⊆ (𝐴 +no 𝐵)))
83, 7mpbii 232 . 2 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 +no ∅) ⊆ (𝐴 +no 𝐵))
92, 8eqsstrrd 4021 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → 𝐴 ⊆ (𝐴 +no 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wss 3948  c0 4322  Oncon0 6364  (class class class)co 7408   +no cnadd 8663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-frecs 8265  df-nadd 8664
This theorem is referenced by:  naddword2  8690  addsproplem2  27451
  Copyright terms: Public domain W3C validator