Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemeg46rgv Structured version   Visualization version   GIF version

Theorem cdlemeg46rgv 40517
Description: TODO FIX COMMENT r g(s) v1 p. 116 3rd line. (Contributed by NM, 3-Apr-2013.)
Hypotheses
Ref Expression
cdlemef46g.b 𝐵 = (Base‘𝐾)
cdlemef46g.l = (le‘𝐾)
cdlemef46g.j = (join‘𝐾)
cdlemef46g.m = (meet‘𝐾)
cdlemef46g.a 𝐴 = (Atoms‘𝐾)
cdlemef46g.h 𝐻 = (LHyp‘𝐾)
cdlemef46g.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdlemef46g.d 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdlemefs46g.e 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
cdlemef46g.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
cdlemef46.v 𝑉 = ((𝑄 𝑃) 𝑊)
cdlemef46.n 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
cdlemefs46.o 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
cdlemef46.g 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
cdlemeg46.y 𝑌 = ((𝑅 (𝐺𝑆)) 𝑊)
cdlemeg46.x 𝑋 = (((𝐹𝑅) 𝑆) 𝑊)
Assertion
Ref Expression
cdlemeg46rgv ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 ((𝐺𝑆) 𝑋))
Distinct variable groups:   𝑡,𝑠,𝑥,𝑦,𝑧,𝐴   𝐵,𝑠,𝑡,𝑥,𝑦,𝑧   𝐷,𝑠,𝑥,𝑦,𝑧   𝑥,𝐸,𝑦,𝑧   𝐻,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝐾,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   ,𝑠,𝑡,𝑥,𝑦,𝑧   𝑃,𝑠,𝑡,𝑥,𝑦,𝑧   𝑄,𝑠,𝑡,𝑥,𝑦,𝑧   𝑅,𝑠,𝑡,𝑥,𝑦,𝑧   𝑈,𝑠,𝑡,𝑥,𝑦,𝑧   𝑊,𝑠,𝑡,𝑥,𝑦,𝑧   𝑆,𝑠,𝑡,𝑥,𝑦,𝑧   𝑎,𝑏,𝑐,𝑢,𝑣,𝐴   𝐵,𝑎,𝑏,𝑐,𝑢,𝑣   𝑣,𝐷   𝐺,𝑠,𝑡,𝑥,𝑦,𝑧   𝐻,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   𝐾,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   ,𝑎,𝑏,𝑐,𝑢,𝑣   𝑁,𝑎,𝑏,𝑐   𝑂,𝑎,𝑏,𝑐   𝑃,𝑎,𝑏,𝑐,𝑢,𝑣   𝑄,𝑎,𝑏,𝑐,𝑢,𝑣   𝑅,𝑎,𝑏,𝑐,𝑢,𝑣   𝑆,𝑎,𝑏,𝑐,𝑢,𝑣   𝑉,𝑎,𝑏,𝑐   𝑊,𝑎,𝑏,𝑐,𝑢,𝑣   𝑥,𝑢,𝑦,𝑧,𝑁   𝑥,𝑂,𝑦,𝑧   𝑣,𝑡   𝑢,𝑉   𝑥,𝑣,𝑦,𝑧,𝑉   𝐷,𝑎,𝑏,𝑐   𝐸,𝑎,𝑏,𝑐   𝐹,𝑎,𝑏,𝑐,𝑢,𝑣   𝑡,𝑁   𝑈,𝑎,𝑏,𝑐,𝑣   𝑡,𝑉   𝑠,𝑎,𝑡,𝑏,𝑐   𝑌,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐷(𝑢,𝑡)   𝑈(𝑢)   𝐸(𝑣,𝑢,𝑡,𝑠)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑣,𝑢,𝑎,𝑏,𝑐)   𝑁(𝑣,𝑠)   𝑂(𝑣,𝑢,𝑡,𝑠)   𝑉(𝑠)   𝑋(𝑥,𝑦,𝑧,𝑣,𝑢,𝑡,𝑠,𝑎,𝑏,𝑐)   𝑌(𝑦,𝑣,𝑢,𝑎,𝑏,𝑐)

Proof of Theorem cdlemeg46rgv
StepHypRef Expression
1 cdlemef46g.b . . . 4 𝐵 = (Base‘𝐾)
2 cdlemef46g.l . . . 4 = (le‘𝐾)
3 cdlemef46g.j . . . 4 = (join‘𝐾)
4 cdlemef46g.m . . . 4 = (meet‘𝐾)
5 cdlemef46g.a . . . 4 𝐴 = (Atoms‘𝐾)
6 cdlemef46g.h . . . 4 𝐻 = (LHyp‘𝐾)
7 cdlemef46g.u . . . 4 𝑈 = ((𝑃 𝑄) 𝑊)
8 cdlemef46g.d . . . 4 𝐷 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
9 cdlemefs46g.e . . . 4 𝐸 = ((𝑃 𝑄) (𝐷 ((𝑠 𝑡) 𝑊)))
10 cdlemef46g.f . . . 4 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (if(𝑠 (𝑃 𝑄), (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐸)), 𝑠 / 𝑡𝐷) (𝑥 𝑊)))), 𝑥))
11 cdlemef46.v . . . 4 𝑉 = ((𝑄 𝑃) 𝑊)
12 cdlemef46.n . . . 4 𝑁 = ((𝑣 𝑉) (𝑃 ((𝑄 𝑣) 𝑊)))
13 cdlemefs46.o . . . 4 𝑂 = ((𝑄 𝑃) (𝑁 ((𝑢 𝑣) 𝑊)))
14 cdlemef46.g . . . 4 𝐺 = (𝑎𝐵 ↦ if((𝑄𝑃 ∧ ¬ 𝑎 𝑊), (𝑐𝐵𝑢𝐴 ((¬ 𝑢 𝑊 ∧ (𝑢 (𝑎 𝑊)) = 𝑎) → 𝑐 = (if(𝑢 (𝑄 𝑃), (𝑏𝐵𝑣𝐴 ((¬ 𝑣 𝑊 ∧ ¬ 𝑣 (𝑄 𝑃)) → 𝑏 = 𝑂)), 𝑢 / 𝑣𝑁) (𝑎 𝑊)))), 𝑎))
15 cdlemeg46.y . . . 4 𝑌 = ((𝑅 (𝐺𝑆)) 𝑊)
16 cdlemeg46.x . . . 4 𝑋 = (((𝐹𝑅) 𝑆) 𝑊)
171, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cdlemeg46vrg 40516 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑋 (𝑅 (𝐺𝑆)))
18 simp11l 1285 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ HL)
19 simp11 1204 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
20 simp1 1136 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)))
21 simp22 1208 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
221, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme46fvaw 40490 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))
2320, 21, 22syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))
24 simp23l 1295 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑆𝐴)
25 simp21 1207 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑃𝑄)
26 simp3l 1202 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 (𝑃 𝑄))
271, 2, 3, 4, 5, 6, 7, 8, 9, 10cdleme46fsvlpq 40494 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) ∧ 𝑅 (𝑃 𝑄)) → (𝐹𝑅) (𝑃 𝑄))
2820, 25, 21, 26, 27syl121anc 1377 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐹𝑅) (𝑃 𝑄))
29 simp3r 1203 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ 𝑆 (𝑃 𝑄))
30 nbrne2 5112 . . . . . 6 (((𝐹𝑅) (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄)) → (𝐹𝑅) ≠ 𝑆)
3128, 29, 30syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐹𝑅) ≠ 𝑆)
322, 3, 4, 5, 6, 16lhpat2 40034 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊) ∧ (𝑆𝐴 ∧ (𝐹𝑅) ≠ 𝑆)) → 𝑋𝐴)
3319, 23, 24, 31, 32syl112anc 1376 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑋𝐴)
34 simp22l 1293 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅𝐴)
35 simp23 1209 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑆𝐴 ∧ ¬ 𝑆 𝑊))
361, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14cdlemeg46fvaw 40505 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊) ∧ 𝑃𝑄) → ((𝐺𝑆) ∈ 𝐴 ∧ ¬ (𝐺𝑆) 𝑊))
3720, 35, 25, 36syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝐺𝑆) ∈ 𝐴 ∧ ¬ (𝐺𝑆) 𝑊))
3837simpld 494 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐺𝑆) ∈ 𝐴)
3918hllatd 39353 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝐾 ∈ Lat)
4023simpld 494 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝐹𝑅) ∈ 𝐴)
411, 3, 5hlatjcl 39356 . . . . . . . 8 ((𝐾 ∈ HL ∧ (𝐹𝑅) ∈ 𝐴𝑆𝐴) → ((𝐹𝑅) 𝑆) ∈ 𝐵)
4218, 40, 24, 41syl3anc 1373 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ((𝐹𝑅) 𝑆) ∈ 𝐵)
43 simp11r 1286 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑊𝐻)
441, 6lhpbase 39987 . . . . . . . 8 (𝑊𝐻𝑊𝐵)
4543, 44syl 17 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑊𝐵)
461, 2, 4latmle2 18371 . . . . . . 7 ((𝐾 ∈ Lat ∧ ((𝐹𝑅) 𝑆) ∈ 𝐵𝑊𝐵) → (((𝐹𝑅) 𝑆) 𝑊) 𝑊)
4739, 42, 45, 46syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (((𝐹𝑅) 𝑆) 𝑊) 𝑊)
4816, 47eqbrtrid 5127 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑋 𝑊)
4937simprd 495 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → ¬ (𝐺𝑆) 𝑊)
50 nbrne2 5112 . . . . 5 ((𝑋 𝑊 ∧ ¬ (𝐺𝑆) 𝑊) → 𝑋 ≠ (𝐺𝑆))
5148, 49, 50syl2anc 584 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑋 ≠ (𝐺𝑆))
522, 3, 5hlatexch2 39385 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑅𝐴 ∧ (𝐺𝑆) ∈ 𝐴) ∧ 𝑋 ≠ (𝐺𝑆)) → (𝑋 (𝑅 (𝐺𝑆)) → 𝑅 (𝑋 (𝐺𝑆))))
5318, 33, 34, 38, 51, 52syl131anc 1385 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑋 (𝑅 (𝐺𝑆)) → 𝑅 (𝑋 (𝐺𝑆))))
5417, 53mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 (𝑋 (𝐺𝑆)))
553, 5hlatjcom 39357 . . 3 ((𝐾 ∈ HL ∧ 𝑋𝐴 ∧ (𝐺𝑆) ∈ 𝐴) → (𝑋 (𝐺𝑆)) = ((𝐺𝑆) 𝑋))
5618, 33, 38, 55syl3anc 1373 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → (𝑋 (𝐺𝑆)) = ((𝐺𝑆) 𝑋))
5754, 56breqtrd 5118 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ (𝑅 (𝑃 𝑄) ∧ ¬ 𝑆 (𝑃 𝑄))) → 𝑅 ((𝐺𝑆) 𝑋))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  csb 3851  ifcif 4476   class class class wbr 5092  cmpt 5173  cfv 6482  crio 7305  (class class class)co 7349  Basecbs 17120  lecple 17168  joincjn 18217  meetcmee 18218  Latclat 18337  Atomscatm 39252  HLchlt 39339  LHypclh 39973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-riotaBAD 38942
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-undef 8206  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39165  df-ol 39167  df-oml 39168  df-covers 39255  df-ats 39256  df-atl 39287  df-cvlat 39311  df-hlat 39340  df-llines 39487  df-lplanes 39488  df-lvols 39489  df-lines 39490  df-psubsp 39492  df-pmap 39493  df-padd 39785  df-lhyp 39977
This theorem is referenced by:  cdlemeg46req  40518
  Copyright terms: Public domain W3C validator