Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk14 Structured version   Visualization version   GIF version

Theorem cdlemk14 40857
Description: Part of proof of Lemma K of [Crawley] p. 118. Line 19 on p. 119. 𝑂, 𝐷 are k1, f1. (Contributed by NM, 1-Jul-2013.)
Hypotheses
Ref Expression
cdlemk1.b 𝐵 = (Base‘𝐾)
cdlemk1.l = (le‘𝐾)
cdlemk1.j = (join‘𝐾)
cdlemk1.m = (meet‘𝐾)
cdlemk1.a 𝐴 = (Atoms‘𝐾)
cdlemk1.h 𝐻 = (LHyp‘𝐾)
cdlemk1.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemk1.r 𝑅 = ((trL‘𝐾)‘𝑊)
cdlemk1.s 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
cdlemk1.o 𝑂 = (𝑆𝐷)
Assertion
Ref Expression
cdlemk14 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑁𝑃) ((𝑂𝑃) (𝑅‘(𝐹𝐷))))
Distinct variable groups:   𝑓,𝑖,   ,𝑖   ,𝑓,𝑖   𝐴,𝑖   𝐷,𝑓,𝑖   𝑓,𝐹,𝑖   𝑖,𝐻   𝑖,𝐾   𝑓,𝑁,𝑖   𝑃,𝑓,𝑖   𝑅,𝑓,𝑖   𝑇,𝑓,𝑖   𝑓,𝑊,𝑖
Allowed substitution hints:   𝐴(𝑓)   𝐵(𝑓,𝑖)   𝑆(𝑓,𝑖)   𝐻(𝑓)   𝐾(𝑓)   (𝑓)   𝑂(𝑓,𝑖)

Proof of Theorem cdlemk14
StepHypRef Expression
1 cdlemk1.b . . . . 5 𝐵 = (Base‘𝐾)
2 cdlemk1.l . . . . 5 = (le‘𝐾)
3 cdlemk1.j . . . . 5 = (join‘𝐾)
4 cdlemk1.m . . . . 5 = (meet‘𝐾)
5 cdlemk1.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 cdlemk1.h . . . . 5 𝐻 = (LHyp‘𝐾)
7 cdlemk1.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
8 cdlemk1.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
9 cdlemk1.s . . . . 5 𝑆 = (𝑓𝑇 ↦ (𝑖𝑇 (𝑖𝑃) = ((𝑃 (𝑅𝑓)) ((𝑁𝑃) (𝑅‘(𝑓𝐹))))))
10 cdlemk1.o . . . . 5 𝑂 = (𝑆𝐷)
111, 2, 3, 4, 5, 6, 7, 8, 9, 10cdlemk13 40855 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑂𝑃) = ((𝑃 (𝑅𝐷)) ((𝑁𝑃) (𝑅‘(𝐷𝐹)))))
12 simp11l 1284 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → 𝐾 ∈ HL)
1312hllatd 39366 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → 𝐾 ∈ Lat)
14 simp22l 1292 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → 𝑃𝐴)
15 simp11 1203 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
16 simp13 1205 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → 𝐷𝑇)
17 simp32 1210 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → 𝐷 ≠ ( I ↾ 𝐵))
181, 5, 6, 7, 8trlnidat 40176 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇𝐷 ≠ ( I ↾ 𝐵)) → (𝑅𝐷) ∈ 𝐴)
1915, 16, 17, 18syl3anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑅𝐷) ∈ 𝐴)
201, 3, 5hlatjcl 39369 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴 ∧ (𝑅𝐷) ∈ 𝐴) → (𝑃 (𝑅𝐷)) ∈ 𝐵)
2112, 14, 19, 20syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑃 (𝑅𝐷)) ∈ 𝐵)
22 simp21 1206 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → 𝑁𝑇)
232, 5, 6, 7ltrnat 40143 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑁𝑇𝑃𝐴) → (𝑁𝑃) ∈ 𝐴)
2415, 22, 14, 23syl3anc 1372 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑁𝑃) ∈ 𝐴)
25 simp12 1204 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → 𝐹𝑇)
26 simp33 1211 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑅𝐷) ≠ (𝑅𝐹))
275, 6, 7, 8trlcocnvat 40727 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝑇𝐹𝑇) ∧ (𝑅𝐷) ≠ (𝑅𝐹)) → (𝑅‘(𝐷𝐹)) ∈ 𝐴)
2815, 16, 25, 26, 27syl121anc 1376 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑅‘(𝐷𝐹)) ∈ 𝐴)
291, 3, 5hlatjcl 39369 . . . . . 6 ((𝐾 ∈ HL ∧ (𝑁𝑃) ∈ 𝐴 ∧ (𝑅‘(𝐷𝐹)) ∈ 𝐴) → ((𝑁𝑃) (𝑅‘(𝐷𝐹))) ∈ 𝐵)
3012, 24, 28, 29syl3anc 1372 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → ((𝑁𝑃) (𝑅‘(𝐷𝐹))) ∈ 𝐵)
311, 2, 4latmle2 18511 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 (𝑅𝐷)) ∈ 𝐵 ∧ ((𝑁𝑃) (𝑅‘(𝐷𝐹))) ∈ 𝐵) → ((𝑃 (𝑅𝐷)) ((𝑁𝑃) (𝑅‘(𝐷𝐹)))) ((𝑁𝑃) (𝑅‘(𝐷𝐹))))
3213, 21, 30, 31syl3anc 1372 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → ((𝑃 (𝑅𝐷)) ((𝑁𝑃) (𝑅‘(𝐷𝐹)))) ((𝑁𝑃) (𝑅‘(𝐷𝐹))))
3311, 32eqbrtrd 5164 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑂𝑃) ((𝑁𝑃) (𝑅‘(𝐷𝐹))))
3410fveq1i 6906 . . . . 5 (𝑂𝑃) = ((𝑆𝐷)‘𝑃)
351, 2, 3, 5, 6, 7, 8, 4, 9cdlemksat 40849 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → ((𝑆𝐷)‘𝑃) ∈ 𝐴)
3634, 35eqeltrid 2844 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑂𝑃) ∈ 𝐴)
376, 7ltrncnv 40149 . . . . . . . . 9 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → 𝐹𝑇)
3815, 25, 37syl2anc 584 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → 𝐹𝑇)
396, 7ltrnco 40722 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇𝐹𝑇) → (𝐷𝐹) ∈ 𝑇)
4015, 16, 38, 39syl3anc 1372 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝐷𝐹) ∈ 𝑇)
412, 6, 7, 8trlle 40187 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝐷𝐹) ∈ 𝑇) → (𝑅‘(𝐷𝐹)) 𝑊)
4215, 40, 41syl2anc 584 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑅‘(𝐷𝐹)) 𝑊)
431, 2, 3, 4, 5, 6, 7, 8, 9, 10cdlemkoatnle 40854 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → ((𝑂𝑃) ∈ 𝐴 ∧ ¬ (𝑂𝑃) 𝑊))
4443simprd 495 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → ¬ (𝑂𝑃) 𝑊)
45 nbrne2 5162 . . . . . 6 (((𝑅‘(𝐷𝐹)) 𝑊 ∧ ¬ (𝑂𝑃) 𝑊) → (𝑅‘(𝐷𝐹)) ≠ (𝑂𝑃))
4642, 44, 45syl2anc 584 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑅‘(𝐷𝐹)) ≠ (𝑂𝑃))
4746necomd 2995 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑂𝑃) ≠ (𝑅‘(𝐷𝐹)))
482, 3, 5hlatexch2 39399 . . . 4 ((𝐾 ∈ HL ∧ ((𝑂𝑃) ∈ 𝐴 ∧ (𝑁𝑃) ∈ 𝐴 ∧ (𝑅‘(𝐷𝐹)) ∈ 𝐴) ∧ (𝑂𝑃) ≠ (𝑅‘(𝐷𝐹))) → ((𝑂𝑃) ((𝑁𝑃) (𝑅‘(𝐷𝐹))) → (𝑁𝑃) ((𝑂𝑃) (𝑅‘(𝐷𝐹)))))
4912, 36, 24, 28, 47, 48syl131anc 1384 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → ((𝑂𝑃) ((𝑁𝑃) (𝑅‘(𝐷𝐹))) → (𝑁𝑃) ((𝑂𝑃) (𝑅‘(𝐷𝐹)))))
5033, 49mpd 15 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑁𝑃) ((𝑂𝑃) (𝑅‘(𝐷𝐹))))
516, 7, 8trlcocnv 40723 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐷𝑇𝐹𝑇) → (𝑅‘(𝐷𝐹)) = (𝑅‘(𝐹𝐷)))
5215, 16, 25, 51syl3anc 1372 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑅‘(𝐷𝐹)) = (𝑅‘(𝐹𝐷)))
5352oveq2d 7448 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → ((𝑂𝑃) (𝑅‘(𝐷𝐹))) = ((𝑂𝑃) (𝑅‘(𝐹𝐷))))
5450, 53breqtrd 5168 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇𝐷𝑇) ∧ (𝑁𝑇 ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑅𝐹) = (𝑅𝑁)) ∧ (𝐹 ≠ ( I ↾ 𝐵) ∧ 𝐷 ≠ ( I ↾ 𝐵) ∧ (𝑅𝐷) ≠ (𝑅𝐹))) → (𝑁𝑃) ((𝑂𝑃) (𝑅‘(𝐹𝐷))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939   class class class wbr 5142  cmpt 5224   I cid 5576  ccnv 5683  cres 5686  ccom 5688  cfv 6560  crio 7388  (class class class)co 7432  Basecbs 17248  lecple 17305  joincjn 18358  meetcmee 18359  Latclat 18477  Atomscatm 39265  HLchlt 39352  LHypclh 39987  LTrncltrn 40104  trLctrl 40161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-riotaBAD 38955
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-undef 8299  df-map 8869  df-proset 18341  df-poset 18360  df-plt 18376  df-lub 18392  df-glb 18393  df-join 18394  df-meet 18395  df-p0 18471  df-p1 18472  df-lat 18478  df-clat 18545  df-oposet 39178  df-ol 39180  df-oml 39181  df-covers 39268  df-ats 39269  df-atl 39300  df-cvlat 39324  df-hlat 39353  df-llines 39501  df-lplanes 39502  df-lvols 39503  df-lines 39504  df-psubsp 39506  df-pmap 39507  df-padd 39799  df-lhyp 39991  df-laut 39992  df-ldil 40107  df-ltrn 40108  df-trl 40162
This theorem is referenced by:  cdlemk15  40858  cdlemk14-2N  40881
  Copyright terms: Public domain W3C validator