Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnadd1com Structured version   Visualization version   GIF version

Theorem nnadd1com 40297
Description: Addition with 1 is commutative for natural numbers. (Contributed by Steven Nguyen, 9-Dec-2022.)
Assertion
Ref Expression
nnadd1com (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴))

Proof of Theorem nnadd1com
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7282 . . 3 (𝑥 = 1 → (𝑥 + 1) = (1 + 1))
2 oveq2 7283 . . 3 (𝑥 = 1 → (1 + 𝑥) = (1 + 1))
31, 2eqeq12d 2754 . 2 (𝑥 = 1 → ((𝑥 + 1) = (1 + 𝑥) ↔ (1 + 1) = (1 + 1)))
4 oveq1 7282 . . 3 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
5 oveq2 7283 . . 3 (𝑥 = 𝑦 → (1 + 𝑥) = (1 + 𝑦))
64, 5eqeq12d 2754 . 2 (𝑥 = 𝑦 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝑦 + 1) = (1 + 𝑦)))
7 oveq1 7282 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
8 oveq2 7283 . . 3 (𝑥 = (𝑦 + 1) → (1 + 𝑥) = (1 + (𝑦 + 1)))
97, 8eqeq12d 2754 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = (1 + 𝑥) ↔ ((𝑦 + 1) + 1) = (1 + (𝑦 + 1))))
10 oveq1 7282 . . 3 (𝑥 = 𝐴 → (𝑥 + 1) = (𝐴 + 1))
11 oveq2 7283 . . 3 (𝑥 = 𝐴 → (1 + 𝑥) = (1 + 𝐴))
1210, 11eqeq12d 2754 . 2 (𝑥 = 𝐴 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝐴 + 1) = (1 + 𝐴)))
13 eqid 2738 . 2 (1 + 1) = (1 + 1)
14 oveq1 7282 . . . 4 ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = ((1 + 𝑦) + 1))
15 1cnd 10970 . . . . 5 (𝑦 ∈ ℕ → 1 ∈ ℂ)
16 nncn 11981 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
1715, 16, 15addassd 10997 . . . 4 (𝑦 ∈ ℕ → ((1 + 𝑦) + 1) = (1 + (𝑦 + 1)))
1814, 17sylan9eqr 2800 . . 3 ((𝑦 ∈ ℕ ∧ (𝑦 + 1) = (1 + 𝑦)) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1)))
1918ex 413 . 2 (𝑦 ∈ ℕ → ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1))))
203, 6, 9, 12, 13, 19nnind 11991 1 (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  (class class class)co 7275  1c1 10872   + caddc 10874  cn 11973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588  ax-1cn 10929  ax-addcl 10931  ax-addass 10936
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-om 7713  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-nn 11974
This theorem is referenced by:  nnaddcom  40298
  Copyright terms: Public domain W3C validator