Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnadd1com Structured version   Visualization version   GIF version

Theorem nnadd1com 42370
Description: Addition with 1 is commutative for natural numbers. (Contributed by Steven Nguyen, 9-Dec-2022.)
Assertion
Ref Expression
nnadd1com (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴))

Proof of Theorem nnadd1com
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7353 . . 3 (𝑥 = 1 → (𝑥 + 1) = (1 + 1))
2 oveq2 7354 . . 3 (𝑥 = 1 → (1 + 𝑥) = (1 + 1))
31, 2eqeq12d 2747 . 2 (𝑥 = 1 → ((𝑥 + 1) = (1 + 𝑥) ↔ (1 + 1) = (1 + 1)))
4 oveq1 7353 . . 3 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
5 oveq2 7354 . . 3 (𝑥 = 𝑦 → (1 + 𝑥) = (1 + 𝑦))
64, 5eqeq12d 2747 . 2 (𝑥 = 𝑦 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝑦 + 1) = (1 + 𝑦)))
7 oveq1 7353 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
8 oveq2 7354 . . 3 (𝑥 = (𝑦 + 1) → (1 + 𝑥) = (1 + (𝑦 + 1)))
97, 8eqeq12d 2747 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = (1 + 𝑥) ↔ ((𝑦 + 1) + 1) = (1 + (𝑦 + 1))))
10 oveq1 7353 . . 3 (𝑥 = 𝐴 → (𝑥 + 1) = (𝐴 + 1))
11 oveq2 7354 . . 3 (𝑥 = 𝐴 → (1 + 𝑥) = (1 + 𝐴))
1210, 11eqeq12d 2747 . 2 (𝑥 = 𝐴 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝐴 + 1) = (1 + 𝐴)))
13 eqid 2731 . 2 (1 + 1) = (1 + 1)
14 oveq1 7353 . . . 4 ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = ((1 + 𝑦) + 1))
15 1cnd 11107 . . . . 5 (𝑦 ∈ ℕ → 1 ∈ ℂ)
16 nncn 12133 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
1715, 16, 15addassd 11134 . . . 4 (𝑦 ∈ ℕ → ((1 + 𝑦) + 1) = (1 + (𝑦 + 1)))
1814, 17sylan9eqr 2788 . . 3 ((𝑦 ∈ ℕ ∧ (𝑦 + 1) = (1 + 𝑦)) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1)))
1918ex 412 . 2 (𝑦 ∈ ℕ → ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1))))
203, 6, 9, 12, 13, 19nnind 12143 1 (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  (class class class)co 7346  1c1 11007   + caddc 11009  cn 12125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668  ax-1cn 11064  ax-addcl 11066  ax-addass 11071
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12126
This theorem is referenced by:  nnaddcom  42371  renegmulnnass  42568
  Copyright terms: Public domain W3C validator