Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnadd1com Structured version   Visualization version   GIF version

Theorem nnadd1com 40218
Description: Addition with 1 is commutative for natural numbers. (Contributed by Steven Nguyen, 9-Dec-2022.)
Assertion
Ref Expression
nnadd1com (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴))

Proof of Theorem nnadd1com
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7262 . . 3 (𝑥 = 1 → (𝑥 + 1) = (1 + 1))
2 oveq2 7263 . . 3 (𝑥 = 1 → (1 + 𝑥) = (1 + 1))
31, 2eqeq12d 2754 . 2 (𝑥 = 1 → ((𝑥 + 1) = (1 + 𝑥) ↔ (1 + 1) = (1 + 1)))
4 oveq1 7262 . . 3 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
5 oveq2 7263 . . 3 (𝑥 = 𝑦 → (1 + 𝑥) = (1 + 𝑦))
64, 5eqeq12d 2754 . 2 (𝑥 = 𝑦 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝑦 + 1) = (1 + 𝑦)))
7 oveq1 7262 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
8 oveq2 7263 . . 3 (𝑥 = (𝑦 + 1) → (1 + 𝑥) = (1 + (𝑦 + 1)))
97, 8eqeq12d 2754 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = (1 + 𝑥) ↔ ((𝑦 + 1) + 1) = (1 + (𝑦 + 1))))
10 oveq1 7262 . . 3 (𝑥 = 𝐴 → (𝑥 + 1) = (𝐴 + 1))
11 oveq2 7263 . . 3 (𝑥 = 𝐴 → (1 + 𝑥) = (1 + 𝐴))
1210, 11eqeq12d 2754 . 2 (𝑥 = 𝐴 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝐴 + 1) = (1 + 𝐴)))
13 eqid 2738 . 2 (1 + 1) = (1 + 1)
14 oveq1 7262 . . . 4 ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = ((1 + 𝑦) + 1))
15 1cnd 10901 . . . . 5 (𝑦 ∈ ℕ → 1 ∈ ℂ)
16 nncn 11911 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
1715, 16, 15addassd 10928 . . . 4 (𝑦 ∈ ℕ → ((1 + 𝑦) + 1) = (1 + (𝑦 + 1)))
1814, 17sylan9eqr 2801 . . 3 ((𝑦 ∈ ℕ ∧ (𝑦 + 1) = (1 + 𝑦)) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1)))
1918ex 412 . 2 (𝑦 ∈ ℕ → ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1))))
203, 6, 9, 12, 13, 19nnind 11921 1 (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  (class class class)co 7255  1c1 10803   + caddc 10805  cn 11903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566  ax-1cn 10860  ax-addcl 10862  ax-addass 10867
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-nn 11904
This theorem is referenced by:  nnaddcom  40219
  Copyright terms: Public domain W3C validator