| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnadd1com | Structured version Visualization version GIF version | ||
| Description: Addition with 1 is commutative for natural numbers. (Contributed by Steven Nguyen, 9-Dec-2022.) |
| Ref | Expression |
|---|---|
| nnadd1com | ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7412 | . . 3 ⊢ (𝑥 = 1 → (𝑥 + 1) = (1 + 1)) | |
| 2 | oveq2 7413 | . . 3 ⊢ (𝑥 = 1 → (1 + 𝑥) = (1 + 1)) | |
| 3 | 1, 2 | eqeq12d 2751 | . 2 ⊢ (𝑥 = 1 → ((𝑥 + 1) = (1 + 𝑥) ↔ (1 + 1) = (1 + 1))) |
| 4 | oveq1 7412 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1)) | |
| 5 | oveq2 7413 | . . 3 ⊢ (𝑥 = 𝑦 → (1 + 𝑥) = (1 + 𝑦)) | |
| 6 | 4, 5 | eqeq12d 2751 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝑦 + 1) = (1 + 𝑦))) |
| 7 | oveq1 7412 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1)) | |
| 8 | oveq2 7413 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (1 + 𝑥) = (1 + (𝑦 + 1))) | |
| 9 | 7, 8 | eqeq12d 2751 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = (1 + 𝑥) ↔ ((𝑦 + 1) + 1) = (1 + (𝑦 + 1)))) |
| 10 | oveq1 7412 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + 1) = (𝐴 + 1)) | |
| 11 | oveq2 7413 | . . 3 ⊢ (𝑥 = 𝐴 → (1 + 𝑥) = (1 + 𝐴)) | |
| 12 | 10, 11 | eqeq12d 2751 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝐴 + 1) = (1 + 𝐴))) |
| 13 | eqid 2735 | . 2 ⊢ (1 + 1) = (1 + 1) | |
| 14 | oveq1 7412 | . . . 4 ⊢ ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = ((1 + 𝑦) + 1)) | |
| 15 | 1cnd 11230 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 1 ∈ ℂ) | |
| 16 | nncn 12248 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 17 | 15, 16, 15 | addassd 11257 | . . . 4 ⊢ (𝑦 ∈ ℕ → ((1 + 𝑦) + 1) = (1 + (𝑦 + 1))) |
| 18 | 14, 17 | sylan9eqr 2792 | . . 3 ⊢ ((𝑦 ∈ ℕ ∧ (𝑦 + 1) = (1 + 𝑦)) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1))) |
| 19 | 18 | ex 412 | . 2 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1)))) |
| 20 | 3, 6, 9, 12, 13, 19 | nnind 12258 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 1c1 11130 + caddc 11132 ℕcn 12240 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 ax-1cn 11187 ax-addcl 11189 ax-addass 11194 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-ov 7408 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-nn 12241 |
| This theorem is referenced by: nnaddcom 42318 renegmulnnass 42496 |
| Copyright terms: Public domain | W3C validator |