Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nnadd1com Structured version   Visualization version   GIF version

Theorem nnadd1com 42256
Description: Addition with 1 is commutative for natural numbers. (Contributed by Steven Nguyen, 9-Dec-2022.)
Assertion
Ref Expression
nnadd1com (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴))

Proof of Theorem nnadd1com
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7455 . . 3 (𝑥 = 1 → (𝑥 + 1) = (1 + 1))
2 oveq2 7456 . . 3 (𝑥 = 1 → (1 + 𝑥) = (1 + 1))
31, 2eqeq12d 2756 . 2 (𝑥 = 1 → ((𝑥 + 1) = (1 + 𝑥) ↔ (1 + 1) = (1 + 1)))
4 oveq1 7455 . . 3 (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1))
5 oveq2 7456 . . 3 (𝑥 = 𝑦 → (1 + 𝑥) = (1 + 𝑦))
64, 5eqeq12d 2756 . 2 (𝑥 = 𝑦 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝑦 + 1) = (1 + 𝑦)))
7 oveq1 7455 . . 3 (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1))
8 oveq2 7456 . . 3 (𝑥 = (𝑦 + 1) → (1 + 𝑥) = (1 + (𝑦 + 1)))
97, 8eqeq12d 2756 . 2 (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = (1 + 𝑥) ↔ ((𝑦 + 1) + 1) = (1 + (𝑦 + 1))))
10 oveq1 7455 . . 3 (𝑥 = 𝐴 → (𝑥 + 1) = (𝐴 + 1))
11 oveq2 7456 . . 3 (𝑥 = 𝐴 → (1 + 𝑥) = (1 + 𝐴))
1210, 11eqeq12d 2756 . 2 (𝑥 = 𝐴 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝐴 + 1) = (1 + 𝐴)))
13 eqid 2740 . 2 (1 + 1) = (1 + 1)
14 oveq1 7455 . . . 4 ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = ((1 + 𝑦) + 1))
15 1cnd 11285 . . . . 5 (𝑦 ∈ ℕ → 1 ∈ ℂ)
16 nncn 12301 . . . . 5 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
1715, 16, 15addassd 11312 . . . 4 (𝑦 ∈ ℕ → ((1 + 𝑦) + 1) = (1 + (𝑦 + 1)))
1814, 17sylan9eqr 2802 . . 3 ((𝑦 ∈ ℕ ∧ (𝑦 + 1) = (1 + 𝑦)) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1)))
1918ex 412 . 2 (𝑦 ∈ ℕ → ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1))))
203, 6, 9, 12, 13, 19nnind 12311 1 (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  (class class class)co 7448  1c1 11185   + caddc 11187  cn 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-1cn 11242  ax-addcl 11244  ax-addass 11249
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-nn 12294
This theorem is referenced by:  nnaddcom  42257  renegmulnnass  42429
  Copyright terms: Public domain W3C validator