| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nnadd1com | Structured version Visualization version GIF version | ||
| Description: Addition with 1 is commutative for natural numbers. (Contributed by Steven Nguyen, 9-Dec-2022.) |
| Ref | Expression |
|---|---|
| nnadd1com | ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7397 | . . 3 ⊢ (𝑥 = 1 → (𝑥 + 1) = (1 + 1)) | |
| 2 | oveq2 7398 | . . 3 ⊢ (𝑥 = 1 → (1 + 𝑥) = (1 + 1)) | |
| 3 | 1, 2 | eqeq12d 2746 | . 2 ⊢ (𝑥 = 1 → ((𝑥 + 1) = (1 + 𝑥) ↔ (1 + 1) = (1 + 1))) |
| 4 | oveq1 7397 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 + 1) = (𝑦 + 1)) | |
| 5 | oveq2 7398 | . . 3 ⊢ (𝑥 = 𝑦 → (1 + 𝑥) = (1 + 𝑦)) | |
| 6 | 4, 5 | eqeq12d 2746 | . 2 ⊢ (𝑥 = 𝑦 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝑦 + 1) = (1 + 𝑦))) |
| 7 | oveq1 7397 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 + 1) = ((𝑦 + 1) + 1)) | |
| 8 | oveq2 7398 | . . 3 ⊢ (𝑥 = (𝑦 + 1) → (1 + 𝑥) = (1 + (𝑦 + 1))) | |
| 9 | 7, 8 | eqeq12d 2746 | . 2 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 + 1) = (1 + 𝑥) ↔ ((𝑦 + 1) + 1) = (1 + (𝑦 + 1)))) |
| 10 | oveq1 7397 | . . 3 ⊢ (𝑥 = 𝐴 → (𝑥 + 1) = (𝐴 + 1)) | |
| 11 | oveq2 7398 | . . 3 ⊢ (𝑥 = 𝐴 → (1 + 𝑥) = (1 + 𝐴)) | |
| 12 | 10, 11 | eqeq12d 2746 | . 2 ⊢ (𝑥 = 𝐴 → ((𝑥 + 1) = (1 + 𝑥) ↔ (𝐴 + 1) = (1 + 𝐴))) |
| 13 | eqid 2730 | . 2 ⊢ (1 + 1) = (1 + 1) | |
| 14 | oveq1 7397 | . . . 4 ⊢ ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = ((1 + 𝑦) + 1)) | |
| 15 | 1cnd 11176 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 1 ∈ ℂ) | |
| 16 | nncn 12201 | . . . . 5 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 17 | 15, 16, 15 | addassd 11203 | . . . 4 ⊢ (𝑦 ∈ ℕ → ((1 + 𝑦) + 1) = (1 + (𝑦 + 1))) |
| 18 | 14, 17 | sylan9eqr 2787 | . . 3 ⊢ ((𝑦 ∈ ℕ ∧ (𝑦 + 1) = (1 + 𝑦)) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1))) |
| 19 | 18 | ex 412 | . 2 ⊢ (𝑦 ∈ ℕ → ((𝑦 + 1) = (1 + 𝑦) → ((𝑦 + 1) + 1) = (1 + (𝑦 + 1)))) |
| 20 | 3, 6, 9, 12, 13, 19 | nnind 12211 | 1 ⊢ (𝐴 ∈ ℕ → (𝐴 + 1) = (1 + 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 1c1 11076 + caddc 11078 ℕcn 12193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 ax-1cn 11133 ax-addcl 11135 ax-addass 11140 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-nn 12194 |
| This theorem is referenced by: nnaddcom 42263 renegmulnnass 42460 |
| Copyright terms: Public domain | W3C validator |