![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvnd | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvnd.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvnd.5 | ⊢ 𝑍 = (0vec‘𝑈) |
nvnd.6 | ⊢ 𝑁 = (normCV‘𝑈) |
nvnd.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
nvnd | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvnd.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nvnd.5 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | nvzcl 30663 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
5 | eqid 2735 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
6 | nvnd.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
7 | nvnd.8 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
8 | 1, 5, 6, 7 | imsdval 30715 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣 ‘𝑈)𝑍))) |
9 | 4, 8 | mpd3an3 1461 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣 ‘𝑈)𝑍))) |
10 | eqid 2735 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
11 | eqid 2735 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
12 | 1, 10, 11, 5 | nvmval 30671 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝑍) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍))) |
13 | 4, 12 | mpd3an3 1461 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝑍) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍))) |
14 | neg1cn 12378 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
15 | 11, 2 | nvsz 30667 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ) → (-1( ·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
16 | 14, 15 | mpan2 691 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (-1( ·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
17 | 16 | oveq2d 7447 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍)) = (𝐴( +𝑣 ‘𝑈)𝑍)) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍)) = (𝐴( +𝑣 ‘𝑈)𝑍)) |
19 | 1, 10, 2 | nv0rid 30664 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)𝑍) = 𝐴) |
20 | 13, 18, 19 | 3eqtrd 2779 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝑍) = 𝐴) |
21 | 20 | fveq2d 6911 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( −𝑣 ‘𝑈)𝑍)) = (𝑁‘𝐴)) |
22 | 9, 21 | eqtr2d 2776 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ‘cfv 6563 (class class class)co 7431 ℂcc 11151 1c1 11154 -cneg 11491 NrmCVeccnv 30613 +𝑣 cpv 30614 BaseSetcba 30615 ·𝑠OLD cns 30616 0veccn0v 30617 −𝑣 cnsb 30618 normCVcnmcv 30619 IndMetcims 30620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-po 5597 df-so 5598 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1st 8013 df-2nd 8014 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-pnf 11295 df-mnf 11296 df-ltxr 11298 df-sub 11492 df-neg 11493 df-grpo 30522 df-gid 30523 df-ginv 30524 df-gdiv 30525 df-ablo 30574 df-vc 30588 df-nv 30621 df-va 30624 df-ba 30625 df-sm 30626 df-0v 30627 df-vs 30628 df-nmcv 30629 df-ims 30630 |
This theorem is referenced by: ubthlem1 30899 |
Copyright terms: Public domain | W3C validator |