![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvnd | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvnd.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
nvnd.5 | ⊢ 𝑍 = (0vec‘𝑈) |
nvnd.6 | ⊢ 𝑁 = (normCV‘𝑈) |
nvnd.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
nvnd | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷𝑍)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvnd.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
2 | nvnd.5 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
3 | 1, 2 | nvzcl 30666 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
4 | 3 | adantr 480 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
5 | eqid 2740 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
6 | nvnd.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
7 | nvnd.8 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
8 | 1, 5, 6, 7 | imsdval 30718 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣 ‘𝑈)𝑍))) |
9 | 4, 8 | mpd3an3 1462 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣 ‘𝑈)𝑍))) |
10 | eqid 2740 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
11 | eqid 2740 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
12 | 1, 10, 11, 5 | nvmval 30674 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝑍) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍))) |
13 | 4, 12 | mpd3an3 1462 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝑍) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍))) |
14 | neg1cn 12407 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
15 | 11, 2 | nvsz 30670 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ) → (-1( ·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
16 | 14, 15 | mpan2 690 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (-1( ·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
17 | 16 | oveq2d 7464 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍)) = (𝐴( +𝑣 ‘𝑈)𝑍)) |
18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍)) = (𝐴( +𝑣 ‘𝑈)𝑍)) |
19 | 1, 10, 2 | nv0rid 30667 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)𝑍) = 𝐴) |
20 | 13, 18, 19 | 3eqtrd 2784 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝑍) = 𝐴) |
21 | 20 | fveq2d 6924 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( −𝑣 ‘𝑈)𝑍)) = (𝑁‘𝐴)) |
22 | 9, 21 | eqtr2d 2781 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷𝑍)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 1c1 11185 -cneg 11521 NrmCVeccnv 30616 +𝑣 cpv 30617 BaseSetcba 30618 ·𝑠OLD cns 30619 0veccn0v 30620 −𝑣 cnsb 30621 normCVcnmcv 30622 IndMetcims 30623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-ltxr 11329 df-sub 11522 df-neg 11523 df-grpo 30525 df-gid 30526 df-ginv 30527 df-gdiv 30528 df-ablo 30577 df-vc 30591 df-nv 30624 df-va 30627 df-ba 30628 df-sm 30629 df-0v 30630 df-vs 30631 df-nmcv 30632 df-ims 30633 |
This theorem is referenced by: ubthlem1 30902 |
Copyright terms: Public domain | W3C validator |