MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnd Structured version   Visualization version   GIF version

Theorem nvnd 30632
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvnd.1 𝑋 = (BaseSet‘𝑈)
nvnd.5 𝑍 = (0vec𝑈)
nvnd.6 𝑁 = (normCV𝑈)
nvnd.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
nvnd ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐷𝑍))

Proof of Theorem nvnd
StepHypRef Expression
1 nvnd.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 nvnd.5 . . . . 5 𝑍 = (0vec𝑈)
31, 2nvzcl 30578 . . . 4 (𝑈 ∈ NrmCVec → 𝑍𝑋)
43adantr 480 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 𝑍𝑋)
5 eqid 2729 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
6 nvnd.6 . . . 4 𝑁 = (normCV𝑈)
7 nvnd.8 . . . 4 𝐷 = (IndMet‘𝑈)
81, 5, 6, 7imsdval 30630 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣𝑈)𝑍)))
94, 8mpd3an3 1464 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣𝑈)𝑍)))
10 eqid 2729 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
11 eqid 2729 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
121, 10, 11, 5nvmval 30586 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴( −𝑣𝑈)𝑍) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))
134, 12mpd3an3 1464 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( −𝑣𝑈)𝑍) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))
14 neg1cn 12113 . . . . . . 7 -1 ∈ ℂ
1511, 2nvsz 30582 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1614, 15mpan2 691 . . . . . 6 (𝑈 ∈ NrmCVec → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1716oveq2d 7365 . . . . 5 (𝑈 ∈ NrmCVec → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
1817adantr 480 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
191, 10, 2nv0rid 30579 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝑍) = 𝐴)
2013, 18, 193eqtrd 2768 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( −𝑣𝑈)𝑍) = 𝐴)
2120fveq2d 6826 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( −𝑣𝑈)𝑍)) = (𝑁𝐴))
229, 21eqtr2d 2765 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐷𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cfv 6482  (class class class)co 7349  cc 11007  1c1 11010  -cneg 11348  NrmCVeccnv 30528   +𝑣 cpv 30529  BaseSetcba 30530   ·𝑠OLD cns 30531  0veccn0v 30532  𝑣 cnsb 30533  normCVcnmcv 30534  IndMetcims 30535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-po 5527  df-so 5528  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-1st 7924  df-2nd 7925  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-ltxr 11154  df-sub 11349  df-neg 11350  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545
This theorem is referenced by:  ubthlem1  30814
  Copyright terms: Public domain W3C validator