| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nvnd | Structured version Visualization version GIF version | ||
| Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nvnd.1 | ⊢ 𝑋 = (BaseSet‘𝑈) |
| nvnd.5 | ⊢ 𝑍 = (0vec‘𝑈) |
| nvnd.6 | ⊢ 𝑁 = (normCV‘𝑈) |
| nvnd.8 | ⊢ 𝐷 = (IndMet‘𝑈) |
| Ref | Expression |
|---|---|
| nvnd | ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷𝑍)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvnd.1 | . . . . 5 ⊢ 𝑋 = (BaseSet‘𝑈) | |
| 2 | nvnd.5 | . . . . 5 ⊢ 𝑍 = (0vec‘𝑈) | |
| 3 | 1, 2 | nvzcl 30563 | . . . 4 ⊢ (𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → 𝑍 ∈ 𝑋) |
| 5 | eqid 2729 | . . . 4 ⊢ ( −𝑣 ‘𝑈) = ( −𝑣 ‘𝑈) | |
| 6 | nvnd.6 | . . . 4 ⊢ 𝑁 = (normCV‘𝑈) | |
| 7 | nvnd.8 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
| 8 | 1, 5, 6, 7 | imsdval 30615 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣 ‘𝑈)𝑍))) |
| 9 | 4, 8 | mpd3an3 1464 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣 ‘𝑈)𝑍))) |
| 10 | eqid 2729 | . . . . . 6 ⊢ ( +𝑣 ‘𝑈) = ( +𝑣 ‘𝑈) | |
| 11 | eqid 2729 | . . . . . 6 ⊢ ( ·𝑠OLD ‘𝑈) = ( ·𝑠OLD ‘𝑈) | |
| 12 | 1, 10, 11, 5 | nvmval 30571 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝑍 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝑍) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍))) |
| 13 | 4, 12 | mpd3an3 1464 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝑍) = (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍))) |
| 14 | neg1cn 12171 | . . . . . . 7 ⊢ -1 ∈ ℂ | |
| 15 | 11, 2 | nvsz 30567 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ) → (-1( ·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
| 16 | 14, 15 | mpan2 691 | . . . . . 6 ⊢ (𝑈 ∈ NrmCVec → (-1( ·𝑠OLD ‘𝑈)𝑍) = 𝑍) |
| 17 | 16 | oveq2d 7403 | . . . . 5 ⊢ (𝑈 ∈ NrmCVec → (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍)) = (𝐴( +𝑣 ‘𝑈)𝑍)) |
| 18 | 17 | adantr 480 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)(-1( ·𝑠OLD ‘𝑈)𝑍)) = (𝐴( +𝑣 ‘𝑈)𝑍)) |
| 19 | 1, 10, 2 | nv0rid 30564 | . . . 4 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( +𝑣 ‘𝑈)𝑍) = 𝐴) |
| 20 | 13, 18, 19 | 3eqtrd 2768 | . . 3 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝐴( −𝑣 ‘𝑈)𝑍) = 𝐴) |
| 21 | 20 | fveq2d 6862 | . 2 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘(𝐴( −𝑣 ‘𝑈)𝑍)) = (𝑁‘𝐴)) |
| 22 | 9, 21 | eqtr2d 2765 | 1 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋) → (𝑁‘𝐴) = (𝐴𝐷𝑍)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 ℂcc 11066 1c1 11069 -cneg 11406 NrmCVeccnv 30513 +𝑣 cpv 30514 BaseSetcba 30515 ·𝑠OLD cns 30516 0veccn0v 30517 −𝑣 cnsb 30518 normCVcnmcv 30519 IndMetcims 30520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-po 5546 df-so 5547 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-ltxr 11213 df-sub 11407 df-neg 11408 df-grpo 30422 df-gid 30423 df-ginv 30424 df-gdiv 30425 df-ablo 30474 df-vc 30488 df-nv 30521 df-va 30524 df-ba 30525 df-sm 30526 df-0v 30527 df-vs 30528 df-nmcv 30529 df-ims 30530 |
| This theorem is referenced by: ubthlem1 30799 |
| Copyright terms: Public domain | W3C validator |