![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nvnd | Structured version Visualization version GIF version |
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nvnd.1 | β’ π = (BaseSetβπ) |
nvnd.5 | β’ π = (0vecβπ) |
nvnd.6 | β’ π = (normCVβπ) |
nvnd.8 | β’ π· = (IndMetβπ) |
Ref | Expression |
---|---|
nvnd | β’ ((π β NrmCVec β§ π΄ β π) β (πβπ΄) = (π΄π·π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nvnd.1 | . . . . 5 β’ π = (BaseSetβπ) | |
2 | nvnd.5 | . . . . 5 β’ π = (0vecβπ) | |
3 | 1, 2 | nvzcl 29874 | . . . 4 β’ (π β NrmCVec β π β π) |
4 | 3 | adantr 481 | . . 3 β’ ((π β NrmCVec β§ π΄ β π) β π β π) |
5 | eqid 2732 | . . . 4 β’ ( βπ£ βπ) = ( βπ£ βπ) | |
6 | nvnd.6 | . . . 4 β’ π = (normCVβπ) | |
7 | nvnd.8 | . . . 4 β’ π· = (IndMetβπ) | |
8 | 1, 5, 6, 7 | imsdval 29926 | . . 3 β’ ((π β NrmCVec β§ π΄ β π β§ π β π) β (π΄π·π) = (πβ(π΄( βπ£ βπ)π))) |
9 | 4, 8 | mpd3an3 1462 | . 2 β’ ((π β NrmCVec β§ π΄ β π) β (π΄π·π) = (πβ(π΄( βπ£ βπ)π))) |
10 | eqid 2732 | . . . . . 6 β’ ( +π£ βπ) = ( +π£ βπ) | |
11 | eqid 2732 | . . . . . 6 β’ ( Β·π OLD βπ) = ( Β·π OLD βπ) | |
12 | 1, 10, 11, 5 | nvmval 29882 | . . . . 5 β’ ((π β NrmCVec β§ π΄ β π β§ π β π) β (π΄( βπ£ βπ)π) = (π΄( +π£ βπ)(-1( Β·π OLD βπ)π))) |
13 | 4, 12 | mpd3an3 1462 | . . . 4 β’ ((π β NrmCVec β§ π΄ β π) β (π΄( βπ£ βπ)π) = (π΄( +π£ βπ)(-1( Β·π OLD βπ)π))) |
14 | neg1cn 12322 | . . . . . . 7 β’ -1 β β | |
15 | 11, 2 | nvsz 29878 | . . . . . . 7 β’ ((π β NrmCVec β§ -1 β β) β (-1( Β·π OLD βπ)π) = π) |
16 | 14, 15 | mpan2 689 | . . . . . 6 β’ (π β NrmCVec β (-1( Β·π OLD βπ)π) = π) |
17 | 16 | oveq2d 7421 | . . . . 5 β’ (π β NrmCVec β (π΄( +π£ βπ)(-1( Β·π OLD βπ)π)) = (π΄( +π£ βπ)π)) |
18 | 17 | adantr 481 | . . . 4 β’ ((π β NrmCVec β§ π΄ β π) β (π΄( +π£ βπ)(-1( Β·π OLD βπ)π)) = (π΄( +π£ βπ)π)) |
19 | 1, 10, 2 | nv0rid 29875 | . . . 4 β’ ((π β NrmCVec β§ π΄ β π) β (π΄( +π£ βπ)π) = π΄) |
20 | 13, 18, 19 | 3eqtrd 2776 | . . 3 β’ ((π β NrmCVec β§ π΄ β π) β (π΄( βπ£ βπ)π) = π΄) |
21 | 20 | fveq2d 6892 | . 2 β’ ((π β NrmCVec β§ π΄ β π) β (πβ(π΄( βπ£ βπ)π)) = (πβπ΄)) |
22 | 9, 21 | eqtr2d 2773 | 1 β’ ((π β NrmCVec β§ π΄ β π) β (πβπ΄) = (π΄π·π)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 βcfv 6540 (class class class)co 7405 βcc 11104 1c1 11107 -cneg 11441 NrmCVeccnv 29824 +π£ cpv 29825 BaseSetcba 29826 Β·π OLD cns 29827 0veccn0v 29828 βπ£ cnsb 29829 normCVcnmcv 29830 IndMetcims 29831 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-po 5587 df-so 5588 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-ltxr 11249 df-sub 11442 df-neg 11443 df-grpo 29733 df-gid 29734 df-ginv 29735 df-gdiv 29736 df-ablo 29785 df-vc 29799 df-nv 29832 df-va 29835 df-ba 29836 df-sm 29837 df-0v 29838 df-vs 29839 df-nmcv 29840 df-ims 29841 |
This theorem is referenced by: ubthlem1 30110 |
Copyright terms: Public domain | W3C validator |