MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nvnd Structured version   Visualization version   GIF version

Theorem nvnd 28094
Description: The norm of a normed complex vector space expressed in terms of the distance function of its induced metric. Problem 1 of [Kreyszig] p. 63. (Contributed by NM, 4-Dec-2006.) (New usage is discouraged.)
Hypotheses
Ref Expression
nvnd.1 𝑋 = (BaseSet‘𝑈)
nvnd.5 𝑍 = (0vec𝑈)
nvnd.6 𝑁 = (normCV𝑈)
nvnd.8 𝐷 = (IndMet‘𝑈)
Assertion
Ref Expression
nvnd ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐷𝑍))

Proof of Theorem nvnd
StepHypRef Expression
1 nvnd.1 . . . . 5 𝑋 = (BaseSet‘𝑈)
2 nvnd.5 . . . . 5 𝑍 = (0vec𝑈)
31, 2nvzcl 28040 . . . 4 (𝑈 ∈ NrmCVec → 𝑍𝑋)
43adantr 474 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → 𝑍𝑋)
5 eqid 2825 . . . 4 ( −𝑣𝑈) = ( −𝑣𝑈)
6 nvnd.6 . . . 4 𝑁 = (normCV𝑈)
7 nvnd.8 . . . 4 𝐷 = (IndMet‘𝑈)
81, 5, 6, 7imsdval 28092 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣𝑈)𝑍)))
94, 8mpd3an3 1590 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐷𝑍) = (𝑁‘(𝐴( −𝑣𝑈)𝑍)))
10 eqid 2825 . . . . . 6 ( +𝑣𝑈) = ( +𝑣𝑈)
11 eqid 2825 . . . . . 6 ( ·𝑠OLD𝑈) = ( ·𝑠OLD𝑈)
121, 10, 11, 5nvmval 28048 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝑍𝑋) → (𝐴( −𝑣𝑈)𝑍) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))
134, 12mpd3an3 1590 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( −𝑣𝑈)𝑍) = (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)))
14 neg1cn 11479 . . . . . . 7 -1 ∈ ℂ
1511, 2nvsz 28044 . . . . . . 7 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ) → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1614, 15mpan2 682 . . . . . 6 (𝑈 ∈ NrmCVec → (-1( ·𝑠OLD𝑈)𝑍) = 𝑍)
1716oveq2d 6926 . . . . 5 (𝑈 ∈ NrmCVec → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
1817adantr 474 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)(-1( ·𝑠OLD𝑈)𝑍)) = (𝐴( +𝑣𝑈)𝑍))
191, 10, 2nv0rid 28041 . . . 4 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( +𝑣𝑈)𝑍) = 𝐴)
2013, 18, 193eqtrd 2865 . . 3 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴( −𝑣𝑈)𝑍) = 𝐴)
2120fveq2d 6441 . 2 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁‘(𝐴( −𝑣𝑈)𝑍)) = (𝑁𝐴))
229, 21eqtr2d 2862 1 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝑁𝐴) = (𝐴𝐷𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1656  wcel 2164  cfv 6127  (class class class)co 6910  cc 10257  1c1 10260  -cneg 10593  NrmCVeccnv 27990   +𝑣 cpv 27991  BaseSetcba 27992   ·𝑠OLD cns 27993  0veccn0v 27994  𝑣 cnsb 27995  normCVcnmcv 27996  IndMetcims 27997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-resscn 10316  ax-1cn 10317  ax-icn 10318  ax-addcl 10319  ax-addrcl 10320  ax-mulcl 10321  ax-mulrcl 10322  ax-mulcom 10323  ax-addass 10324  ax-mulass 10325  ax-distr 10326  ax-i2m1 10327  ax-1ne0 10328  ax-1rid 10329  ax-rnegex 10330  ax-rrecex 10331  ax-cnre 10332  ax-pre-lttri 10333  ax-pre-lttrn 10334  ax-pre-ltadd 10335
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-op 4406  df-uni 4661  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-id 5252  df-po 5265  df-so 5266  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-riota 6871  df-ov 6913  df-oprab 6914  df-mpt2 6915  df-1st 7433  df-2nd 7434  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-pnf 10400  df-mnf 10401  df-ltxr 10403  df-sub 10594  df-neg 10595  df-grpo 27899  df-gid 27900  df-ginv 27901  df-gdiv 27902  df-ablo 27951  df-vc 27965  df-nv 27998  df-va 28001  df-ba 28002  df-sm 28003  df-0v 28004  df-vs 28005  df-nmcv 28006  df-ims 28007
This theorem is referenced by:  ubthlem1  28277
  Copyright terms: Public domain W3C validator