Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omordlim | Structured version Visualization version GIF version |
Description: Ordering involving the product of a limit ordinal. Proposition 8.23 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.) |
Ref | Expression |
---|---|
omordlim | ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) ∧ 𝐶 ∈ (𝐴 ·o 𝐵)) → ∃𝑥 ∈ 𝐵 𝐶 ∈ (𝐴 ·o 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlim 8409 | . . . 4 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) | |
2 | 1 | eleq2d 2823 | . . 3 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) → (𝐶 ∈ (𝐴 ·o 𝐵) ↔ 𝐶 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥))) |
3 | eliun 4939 | . . 3 ⊢ (𝐶 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥) ↔ ∃𝑥 ∈ 𝐵 𝐶 ∈ (𝐴 ·o 𝑥)) | |
4 | 2, 3 | bitrdi 286 | . 2 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) → (𝐶 ∈ (𝐴 ·o 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝐶 ∈ (𝐴 ·o 𝑥))) |
5 | 4 | biimpa 477 | 1 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) ∧ 𝐶 ∈ (𝐴 ·o 𝐵)) → ∃𝑥 ∈ 𝐵 𝐶 ∈ (𝐴 ·o 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ∃wrex 3071 ∪ ciun 4935 Oncon0 6286 Lim wlim 6287 (class class class)co 7313 ·o comu 8340 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pr 5365 ax-un 7626 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-ov 7316 df-oprab 7317 df-mpo 7318 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-omul 8347 |
This theorem is referenced by: odi 8456 omass 8457 oaabs2 8525 |
Copyright terms: Public domain | W3C validator |