![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omordlim | Structured version Visualization version GIF version |
Description: Ordering involving the product of a limit ordinal. Proposition 8.23 of [TakeutiZaring] p. 64. (Contributed by NM, 25-Dec-2004.) |
Ref | Expression |
---|---|
omordlim | ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) ∧ 𝐶 ∈ (𝐴 ·o 𝐵)) → ∃𝑥 ∈ 𝐵 𝐶 ∈ (𝐴 ·o 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omlim 8569 | . . . 4 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) → (𝐴 ·o 𝐵) = ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥)) | |
2 | 1 | eleq2d 2824 | . . 3 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) → (𝐶 ∈ (𝐴 ·o 𝐵) ↔ 𝐶 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥))) |
3 | eliun 4999 | . . 3 ⊢ (𝐶 ∈ ∪ 𝑥 ∈ 𝐵 (𝐴 ·o 𝑥) ↔ ∃𝑥 ∈ 𝐵 𝐶 ∈ (𝐴 ·o 𝑥)) | |
4 | 2, 3 | bitrdi 287 | . 2 ⊢ ((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) → (𝐶 ∈ (𝐴 ·o 𝐵) ↔ ∃𝑥 ∈ 𝐵 𝐶 ∈ (𝐴 ·o 𝑥))) |
5 | 4 | biimpa 476 | 1 ⊢ (((𝐴 ∈ On ∧ (𝐵 ∈ 𝐷 ∧ Lim 𝐵)) ∧ 𝐶 ∈ (𝐴 ·o 𝐵)) → ∃𝑥 ∈ 𝐵 𝐶 ∈ (𝐴 ·o 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∃wrex 3067 ∪ ciun 4995 Oncon0 6385 Lim wlim 6386 (class class class)co 7430 ·o comu 8502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pr 5437 ax-un 7753 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-ov 7433 df-oprab 7434 df-mpo 7435 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-omul 8509 |
This theorem is referenced by: odi 8615 omass 8616 oaabs2 8685 |
Copyright terms: Public domain | W3C validator |