Users' Mathboxes Mathbox for Chen-Pang He < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsucsuccmp Structured version   Visualization version   GIF version

Theorem onsucsuccmp 34560
Description: The successor of a successor ordinal number is a compact topology. (Contributed by Chen-Pang He, 18-Oct-2015.)
Assertion
Ref Expression
onsucsuccmp (𝐴 ∈ On → suc suc 𝐴 ∈ Comp)

Proof of Theorem onsucsuccmp
StepHypRef Expression
1 suceq 6316 . . . 4 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅))
2 suceq 6316 . . . 4 (suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅) → suc suc 𝐴 = suc suc if(𝐴 ∈ On, 𝐴, ∅))
31, 2syl 17 . . 3 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc suc 𝐴 = suc suc if(𝐴 ∈ On, 𝐴, ∅))
43eleq1d 2823 . 2 (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (suc suc 𝐴 ∈ Comp ↔ suc suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Comp))
5 0elon 6304 . . . 4 ∅ ∈ On
65elimel 4525 . . 3 if(𝐴 ∈ On, 𝐴, ∅) ∈ On
76onsucsuccmpi 34559 . 2 suc suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Comp
84, 7dedth 4514 1 (𝐴 ∈ On → suc suc 𝐴 ∈ Comp)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  c0 4253  ifcif 4456  Oncon0 6251  suc csuc 6253  Compccmp 22445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1o 8267  df-en 8692  df-fin 8695  df-topgen 17071  df-top 21951  df-bases 22004  df-cmp 22446
This theorem is referenced by:  ordcmp  34563
  Copyright terms: Public domain W3C validator