|   | Mathbox for Chen-Pang He | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucsuccmp | Structured version Visualization version GIF version | ||
| Description: The successor of a successor ordinal number is a compact topology. (Contributed by Chen-Pang He, 18-Oct-2015.) | 
| Ref | Expression | 
|---|---|
| onsucsuccmp | ⊢ (𝐴 ∈ On → suc suc 𝐴 ∈ Comp) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | suceq 6450 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅)) | |
| 2 | suceq 6450 | . . . 4 ⊢ (suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅) → suc suc 𝐴 = suc suc if(𝐴 ∈ On, 𝐴, ∅)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc suc 𝐴 = suc suc if(𝐴 ∈ On, 𝐴, ∅)) | 
| 4 | 3 | eleq1d 2826 | . 2 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (suc suc 𝐴 ∈ Comp ↔ suc suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Comp)) | 
| 5 | 0elon 6438 | . . . 4 ⊢ ∅ ∈ On | |
| 6 | 5 | elimel 4595 | . . 3 ⊢ if(𝐴 ∈ On, 𝐴, ∅) ∈ On | 
| 7 | 6 | onsucsuccmpi 36444 | . 2 ⊢ suc suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Comp | 
| 8 | 4, 7 | dedth 4584 | 1 ⊢ (𝐴 ∈ On → suc suc 𝐴 ∈ Comp) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∅c0 4333 ifcif 4525 Oncon0 6384 suc csuc 6386 Compccmp 23394 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1o 8506 df-en 8986 df-fin 8989 df-topgen 17488 df-top 22900 df-bases 22953 df-cmp 23395 | 
| This theorem is referenced by: ordcmp 36448 | 
| Copyright terms: Public domain | W3C validator |