![]() |
Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucsuccmp | Structured version Visualization version GIF version |
Description: The successor of a successor ordinal number is a compact topology. (Contributed by Chen-Pang He, 18-Oct-2015.) |
Ref | Expression |
---|---|
onsucsuccmp | ⊢ (𝐴 ∈ On → suc suc 𝐴 ∈ Comp) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suceq 6138 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅)) | |
2 | suceq 6138 | . . . 4 ⊢ (suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅) → suc suc 𝐴 = suc suc if(𝐴 ∈ On, 𝐴, ∅)) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc suc 𝐴 = suc suc if(𝐴 ∈ On, 𝐴, ∅)) |
4 | 3 | eleq1d 2869 | . 2 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (suc suc 𝐴 ∈ Comp ↔ suc suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Comp)) |
5 | 0elon 6126 | . . . 4 ⊢ ∅ ∈ On | |
6 | 5 | elimel 4454 | . . 3 ⊢ if(𝐴 ∈ On, 𝐴, ∅) ∈ On |
7 | 6 | onsucsuccmpi 33402 | . 2 ⊢ suc suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Comp |
8 | 4, 7 | dedth 4443 | 1 ⊢ (𝐴 ∈ On → suc suc 𝐴 ∈ Comp) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1525 ∈ wcel 2083 ∅c0 4217 ifcif 4387 Oncon0 6073 suc csuc 6075 Compccmp 21682 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-13 2346 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pow 5164 ax-pr 5228 ax-un 7326 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-mo 2578 df-eu 2614 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ne 2987 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-sbc 3712 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-pss 3882 df-nul 4218 df-if 4388 df-pw 4461 df-sn 4479 df-pr 4481 df-tp 4483 df-op 4485 df-uni 4752 df-br 4969 df-opab 5031 df-mpt 5048 df-tr 5071 df-id 5355 df-eprel 5360 df-po 5369 df-so 5370 df-fr 5409 df-we 5411 df-xp 5456 df-rel 5457 df-cnv 5458 df-co 5459 df-dm 5460 df-rn 5461 df-res 5462 df-ima 5463 df-ord 6076 df-on 6077 df-lim 6078 df-suc 6079 df-iota 6196 df-fun 6234 df-fn 6235 df-f 6236 df-f1 6237 df-fo 6238 df-f1o 6239 df-fv 6240 df-om 7444 df-1o 7960 df-en 8365 df-fin 8368 df-topgen 16550 df-top 21190 df-bases 21242 df-cmp 21683 |
This theorem is referenced by: ordcmp 33406 |
Copyright terms: Public domain | W3C validator |