| Mathbox for Chen-Pang He |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > onsucsuccmp | Structured version Visualization version GIF version | ||
| Description: The successor of a successor ordinal number is a compact topology. (Contributed by Chen-Pang He, 18-Oct-2015.) |
| Ref | Expression |
|---|---|
| onsucsuccmp | ⊢ (𝐴 ∈ On → suc suc 𝐴 ∈ Comp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suceq 6419 | . . . 4 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅)) | |
| 2 | suceq 6419 | . . . 4 ⊢ (suc 𝐴 = suc if(𝐴 ∈ On, 𝐴, ∅) → suc suc 𝐴 = suc suc if(𝐴 ∈ On, 𝐴, ∅)) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → suc suc 𝐴 = suc suc if(𝐴 ∈ On, 𝐴, ∅)) |
| 4 | 3 | eleq1d 2819 | . 2 ⊢ (𝐴 = if(𝐴 ∈ On, 𝐴, ∅) → (suc suc 𝐴 ∈ Comp ↔ suc suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Comp)) |
| 5 | 0elon 6407 | . . . 4 ⊢ ∅ ∈ On | |
| 6 | 5 | elimel 4570 | . . 3 ⊢ if(𝐴 ∈ On, 𝐴, ∅) ∈ On |
| 7 | 6 | onsucsuccmpi 36461 | . 2 ⊢ suc suc if(𝐴 ∈ On, 𝐴, ∅) ∈ Comp |
| 8 | 4, 7 | dedth 4559 | 1 ⊢ (𝐴 ∈ On → suc suc 𝐴 ∈ Comp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 ∅c0 4308 ifcif 4500 Oncon0 6352 suc csuc 6354 Compccmp 23324 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-om 7862 df-1o 8480 df-en 8960 df-fin 8963 df-topgen 17457 df-top 22832 df-bases 22884 df-cmp 23325 |
| This theorem is referenced by: ordcmp 36465 |
| Copyright terms: Public domain | W3C validator |