Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnfass Structured version   Visualization version   GIF version

Theorem naddcnfass 43331
Description: Component-wise addition of Cantor normal forms is associative. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
naddcnfass (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))

Proof of Theorem naddcnfass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
21eleq2d 2830 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 ∈ dom (ω CNF 𝑋)))
3 eqid 2740 . . . . . . . 8 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
4 omelon 9715 . . . . . . . . 9 ω ∈ On
54a1i 11 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
6 simpl 482 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73, 5, 6cantnfs 9735 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
82, 7bitrd 279 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
9 simpl 482 . . . . . . 7 ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹:𝑋⟶ω)
109ffnd 6748 . . . . . 6 ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹 Fn 𝑋)
118, 10biimtrdi 253 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 Fn 𝑋))
12 simp1 1136 . . . . 5 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐹𝑆)
1311, 12impel 505 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐹 Fn 𝑋)
141eleq2d 2830 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺 ∈ dom (ω CNF 𝑋)))
153, 5, 6cantnfs 9735 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ dom (ω CNF 𝑋) ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
1614, 15bitrd 279 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆 ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
17 simpl 482 . . . . . . 7 ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺:𝑋⟶ω)
1817ffnd 6748 . . . . . 6 ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺 Fn 𝑋)
1916, 18biimtrdi 253 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺 Fn 𝑋))
20 simp2 1137 . . . . 5 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐺𝑆)
2119, 20impel 505 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐺 Fn 𝑋)
226adantr 480 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝑋 ∈ On)
23 inidm 4248 . . . 4 (𝑋𝑋) = 𝑋
2413, 21, 22, 22, 23offn 7727 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐹f +o 𝐺) Fn 𝑋)
251eleq2d 2830 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻 ∈ dom (ω CNF 𝑋)))
263, 5, 6cantnfs 9735 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ dom (ω CNF 𝑋) ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅)))
2725, 26bitrd 279 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆 ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅)))
28 simpl 482 . . . . . 6 ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻:𝑋⟶ω)
2928ffnd 6748 . . . . 5 ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻 Fn 𝑋)
3027, 29biimtrdi 253 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻 Fn 𝑋))
31 simp3 1138 . . . 4 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐻𝑆)
3230, 31impel 505 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐻 Fn 𝑋)
3324, 32, 22, 22, 23offn 7727 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) Fn 𝑋)
3421, 32, 22, 22, 23offn 7727 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐺f +o 𝐻) Fn 𝑋)
3513, 34, 22, 22, 23offn 7727 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐹f +o (𝐺f +o 𝐻)) Fn 𝑋)
368, 9biimtrdi 253 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹:𝑋⟶ω))
3736, 12impel 505 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐹:𝑋⟶ω)
3837ffvelcdmda 7118 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ω)
3916, 17biimtrdi 253 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺:𝑋⟶ω))
4039, 20impel 505 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐺:𝑋⟶ω)
4140ffvelcdmda 7118 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐺𝑥) ∈ ω)
4227, 28biimtrdi 253 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻:𝑋⟶ω))
4342, 31impel 505 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐻:𝑋⟶ω)
4443ffvelcdmda 7118 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐻𝑥) ∈ ω)
45 nnaass 8678 . . . . 5 (((𝐹𝑥) ∈ ω ∧ (𝐺𝑥) ∈ ω ∧ (𝐻𝑥) ∈ ω) → (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
4638, 41, 44, 45syl3anc 1371 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
4713adantr 480 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐹 Fn 𝑋)
4821adantr 480 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐺 Fn 𝑋)
4922anim1i 614 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝑋 ∈ On ∧ 𝑥𝑋))
50 fnfvof 7731 . . . . . 6 (((𝐹 Fn 𝑋𝐺 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
5147, 48, 49, 50syl21anc 837 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
5251oveq1d 7463 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)) = (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)))
5332adantr 480 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐻 Fn 𝑋)
54 fnfvof 7731 . . . . . 6 (((𝐺 Fn 𝑋𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐺f +o 𝐻)‘𝑥) = ((𝐺𝑥) +o (𝐻𝑥)))
5548, 53, 49, 54syl21anc 837 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐺f +o 𝐻)‘𝑥) = ((𝐺𝑥) +o (𝐻𝑥)))
5655oveq2d 7464 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
5746, 52, 563eqtr4d 2790 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
5824adantr 480 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐹f +o 𝐺) Fn 𝑋)
59 fnfvof 7731 . . . 4 ((((𝐹f +o 𝐺) Fn 𝑋𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)))
6058, 53, 49, 59syl21anc 837 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)))
6134adantr 480 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐺f +o 𝐻) Fn 𝑋)
62 fnfvof 7731 . . . 4 (((𝐹 Fn 𝑋 ∧ (𝐺f +o 𝐻) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑥) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
6347, 61, 49, 62syl21anc 837 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑥) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
6457, 60, 633eqtr4d 2790 . 2 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = ((𝐹f +o (𝐺f +o 𝐻))‘𝑥))
6533, 35, 64eqfnfvd 7067 1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  c0 4352   class class class wbr 5166  dom cdm 5700  Oncon0 6395   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  ωcom 7903   +o coa 8519   finSupp cfsupp 9431   CNF ccnf 9730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-seqom 8504  df-oadd 8526  df-map 8886  df-cnf 9731
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator