Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnfass Structured version   Visualization version   GIF version

Theorem naddcnfass 42104
Description: Component-wise addition of Cantor normal forms is associative. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
naddcnfass (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))

Proof of Theorem naddcnfass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
21eleq2d 2819 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 ∈ dom (ω CNF 𝑋)))
3 eqid 2732 . . . . . . . 8 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
4 omelon 9637 . . . . . . . . 9 ω ∈ On
54a1i 11 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
6 simpl 483 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73, 5, 6cantnfs 9657 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
82, 7bitrd 278 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
9 simpl 483 . . . . . . 7 ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹:𝑋⟶ω)
109ffnd 6715 . . . . . 6 ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹 Fn 𝑋)
118, 10syl6bi 252 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 Fn 𝑋))
12 simp1 1136 . . . . 5 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐹𝑆)
1311, 12impel 506 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐹 Fn 𝑋)
141eleq2d 2819 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺 ∈ dom (ω CNF 𝑋)))
153, 5, 6cantnfs 9657 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ dom (ω CNF 𝑋) ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
1614, 15bitrd 278 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆 ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
17 simpl 483 . . . . . . 7 ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺:𝑋⟶ω)
1817ffnd 6715 . . . . . 6 ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺 Fn 𝑋)
1916, 18syl6bi 252 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺 Fn 𝑋))
20 simp2 1137 . . . . 5 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐺𝑆)
2119, 20impel 506 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐺 Fn 𝑋)
226adantr 481 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝑋 ∈ On)
23 inidm 4217 . . . 4 (𝑋𝑋) = 𝑋
2413, 21, 22, 22, 23offn 7679 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐹f +o 𝐺) Fn 𝑋)
251eleq2d 2819 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻 ∈ dom (ω CNF 𝑋)))
263, 5, 6cantnfs 9657 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ dom (ω CNF 𝑋) ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅)))
2725, 26bitrd 278 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆 ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅)))
28 simpl 483 . . . . . 6 ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻:𝑋⟶ω)
2928ffnd 6715 . . . . 5 ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻 Fn 𝑋)
3027, 29syl6bi 252 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻 Fn 𝑋))
31 simp3 1138 . . . 4 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐻𝑆)
3230, 31impel 506 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐻 Fn 𝑋)
3324, 32, 22, 22, 23offn 7679 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) Fn 𝑋)
3421, 32, 22, 22, 23offn 7679 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐺f +o 𝐻) Fn 𝑋)
3513, 34, 22, 22, 23offn 7679 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐹f +o (𝐺f +o 𝐻)) Fn 𝑋)
368, 9syl6bi 252 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹:𝑋⟶ω))
3736, 12impel 506 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐹:𝑋⟶ω)
3837ffvelcdmda 7083 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ω)
3916, 17syl6bi 252 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺:𝑋⟶ω))
4039, 20impel 506 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐺:𝑋⟶ω)
4140ffvelcdmda 7083 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐺𝑥) ∈ ω)
4227, 28syl6bi 252 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻:𝑋⟶ω))
4342, 31impel 506 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐻:𝑋⟶ω)
4443ffvelcdmda 7083 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐻𝑥) ∈ ω)
45 nnaass 8618 . . . . 5 (((𝐹𝑥) ∈ ω ∧ (𝐺𝑥) ∈ ω ∧ (𝐻𝑥) ∈ ω) → (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
4638, 41, 44, 45syl3anc 1371 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
4713adantr 481 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐹 Fn 𝑋)
4821adantr 481 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐺 Fn 𝑋)
4922anim1i 615 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝑋 ∈ On ∧ 𝑥𝑋))
50 fnfvof 7683 . . . . . 6 (((𝐹 Fn 𝑋𝐺 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
5147, 48, 49, 50syl21anc 836 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
5251oveq1d 7420 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)) = (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)))
5332adantr 481 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐻 Fn 𝑋)
54 fnfvof 7683 . . . . . 6 (((𝐺 Fn 𝑋𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐺f +o 𝐻)‘𝑥) = ((𝐺𝑥) +o (𝐻𝑥)))
5548, 53, 49, 54syl21anc 836 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐺f +o 𝐻)‘𝑥) = ((𝐺𝑥) +o (𝐻𝑥)))
5655oveq2d 7421 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
5746, 52, 563eqtr4d 2782 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
5824adantr 481 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐹f +o 𝐺) Fn 𝑋)
59 fnfvof 7683 . . . 4 ((((𝐹f +o 𝐺) Fn 𝑋𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)))
6058, 53, 49, 59syl21anc 836 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)))
6134adantr 481 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐺f +o 𝐻) Fn 𝑋)
62 fnfvof 7683 . . . 4 (((𝐹 Fn 𝑋 ∧ (𝐺f +o 𝐻) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑥) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
6347, 61, 49, 62syl21anc 836 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑥) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
6457, 60, 633eqtr4d 2782 . 2 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = ((𝐹f +o (𝐺f +o 𝐻))‘𝑥))
6533, 35, 64eqfnfvd 7032 1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  c0 4321   class class class wbr 5147  dom cdm 5675  Oncon0 6361   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405  f cof 7664  ωcom 7851   +o coa 8459   finSupp cfsupp 9357   CNF ccnf 9652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-inf2 9632
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7666  df-om 7852  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-seqom 8444  df-oadd 8466  df-map 8818  df-cnf 9653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator