| Step | Hyp | Ref
| Expression |
| 1 | | simpr 484 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) |
| 2 | 1 | eleq2d 2827 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ 𝐹 ∈ dom (ω CNF 𝑋))) |
| 3 | | eqid 2737 |
. . . . . . . 8
⊢ dom
(ω CNF 𝑋) = dom
(ω CNF 𝑋) |
| 4 | | omelon 9686 |
. . . . . . . . 9
⊢ ω
∈ On |
| 5 | 4 | a1i 11 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈
On) |
| 6 | | simpl 482 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) |
| 7 | 3, 5, 6 | cantnfs 9706 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
| 8 | 2, 7 | bitrd 279 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
| 9 | | simpl 482 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹:𝑋⟶ω) |
| 10 | 9 | ffnd 6737 |
. . . . . 6
⊢ ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹 Fn 𝑋) |
| 11 | 8, 10 | biimtrdi 253 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 → 𝐹 Fn 𝑋)) |
| 12 | | simp1 1137 |
. . . . 5
⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) → 𝐹 ∈ 𝑆) |
| 13 | 11, 12 | impel 505 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐹 Fn 𝑋) |
| 14 | 1 | eleq2d 2827 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 ↔ 𝐺 ∈ dom (ω CNF 𝑋))) |
| 15 | 3, 5, 6 | cantnfs 9706 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ dom (ω CNF 𝑋) ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅))) |
| 16 | 14, 15 | bitrd 279 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅))) |
| 17 | | simpl 482 |
. . . . . . 7
⊢ ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺:𝑋⟶ω) |
| 18 | 17 | ffnd 6737 |
. . . . . 6
⊢ ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺 Fn 𝑋) |
| 19 | 16, 18 | biimtrdi 253 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 → 𝐺 Fn 𝑋)) |
| 20 | | simp2 1138 |
. . . . 5
⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) → 𝐺 ∈ 𝑆) |
| 21 | 19, 20 | impel 505 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐺 Fn 𝑋) |
| 22 | 6 | adantr 480 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝑋 ∈ On) |
| 23 | | inidm 4227 |
. . . 4
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
| 24 | 13, 21, 22, 22, 23 | offn 7710 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) Fn 𝑋) |
| 25 | 1 | eleq2d 2827 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ 𝑆 ↔ 𝐻 ∈ dom (ω CNF 𝑋))) |
| 26 | 3, 5, 6 | cantnfs 9706 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ dom (ω CNF 𝑋) ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅))) |
| 27 | 25, 26 | bitrd 279 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ 𝑆 ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅))) |
| 28 | | simpl 482 |
. . . . . 6
⊢ ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻:𝑋⟶ω) |
| 29 | 28 | ffnd 6737 |
. . . . 5
⊢ ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻 Fn 𝑋) |
| 30 | 27, 29 | biimtrdi 253 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ 𝑆 → 𝐻 Fn 𝑋)) |
| 31 | | simp3 1139 |
. . . 4
⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) → 𝐻 ∈ 𝑆) |
| 32 | 30, 31 | impel 505 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐻 Fn 𝑋) |
| 33 | 24, 32, 22, 22, 23 | offn 7710 |
. 2
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → ((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻) Fn 𝑋) |
| 34 | 21, 32, 22, 22, 23 | offn 7710 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → (𝐺 ∘f +o 𝐻) Fn 𝑋) |
| 35 | 13, 34, 22, 22, 23 | offn 7710 |
. 2
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → (𝐹 ∘f +o (𝐺 ∘f
+o 𝐻)) Fn 𝑋) |
| 36 | 8, 9 | biimtrdi 253 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 → 𝐹:𝑋⟶ω)) |
| 37 | 36, 12 | impel 505 |
. . . . . 6
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐹:𝑋⟶ω) |
| 38 | 37 | ffvelcdmda 7104 |
. . . . 5
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ω) |
| 39 | 16, 17 | biimtrdi 253 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 → 𝐺:𝑋⟶ω)) |
| 40 | 39, 20 | impel 505 |
. . . . . 6
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐺:𝑋⟶ω) |
| 41 | 40 | ffvelcdmda 7104 |
. . . . 5
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ω) |
| 42 | 27, 28 | biimtrdi 253 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ 𝑆 → 𝐻:𝑋⟶ω)) |
| 43 | 42, 31 | impel 505 |
. . . . . 6
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐻:𝑋⟶ω) |
| 44 | 43 | ffvelcdmda 7104 |
. . . . 5
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐻‘𝑥) ∈ ω) |
| 45 | | nnaass 8660 |
. . . . 5
⊢ (((𝐹‘𝑥) ∈ ω ∧ (𝐺‘𝑥) ∈ ω ∧ (𝐻‘𝑥) ∈ ω) → (((𝐹‘𝑥) +o (𝐺‘𝑥)) +o (𝐻‘𝑥)) = ((𝐹‘𝑥) +o ((𝐺‘𝑥) +o (𝐻‘𝑥)))) |
| 46 | 38, 41, 44, 45 | syl3anc 1373 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (((𝐹‘𝑥) +o (𝐺‘𝑥)) +o (𝐻‘𝑥)) = ((𝐹‘𝑥) +o ((𝐺‘𝑥) +o (𝐻‘𝑥)))) |
| 47 | 13 | adantr 480 |
. . . . . 6
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝐹 Fn 𝑋) |
| 48 | 21 | adantr 480 |
. . . . . 6
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝐺 Fn 𝑋) |
| 49 | 22 | anim1i 615 |
. . . . . 6
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) |
| 50 | | fnfvof 7714 |
. . . . . 6
⊢ (((𝐹 Fn 𝑋 ∧ 𝐺 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐹 ∘f +o 𝐺)‘𝑥) = ((𝐹‘𝑥) +o (𝐺‘𝑥))) |
| 51 | 47, 48, 49, 50 | syl21anc 838 |
. . . . 5
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o 𝐺)‘𝑥) = ((𝐹‘𝑥) +o (𝐺‘𝑥))) |
| 52 | 51 | oveq1d 7446 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (((𝐹 ∘f +o 𝐺)‘𝑥) +o (𝐻‘𝑥)) = (((𝐹‘𝑥) +o (𝐺‘𝑥)) +o (𝐻‘𝑥))) |
| 53 | 32 | adantr 480 |
. . . . . 6
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝐻 Fn 𝑋) |
| 54 | | fnfvof 7714 |
. . . . . 6
⊢ (((𝐺 Fn 𝑋 ∧ 𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐺 ∘f +o 𝐻)‘𝑥) = ((𝐺‘𝑥) +o (𝐻‘𝑥))) |
| 55 | 48, 53, 49, 54 | syl21anc 838 |
. . . . 5
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐺 ∘f +o 𝐻)‘𝑥) = ((𝐺‘𝑥) +o (𝐻‘𝑥))) |
| 56 | 55 | oveq2d 7447 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) +o ((𝐺 ∘f +o 𝐻)‘𝑥)) = ((𝐹‘𝑥) +o ((𝐺‘𝑥) +o (𝐻‘𝑥)))) |
| 57 | 46, 52, 56 | 3eqtr4d 2787 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (((𝐹 ∘f +o 𝐺)‘𝑥) +o (𝐻‘𝑥)) = ((𝐹‘𝑥) +o ((𝐺 ∘f +o 𝐻)‘𝑥))) |
| 58 | 24 | adantr 480 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∘f +o 𝐺) Fn 𝑋) |
| 59 | | fnfvof 7714 |
. . . 4
⊢ ((((𝐹 ∘f
+o 𝐺) Fn 𝑋 ∧ 𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → (((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻)‘𝑥) = (((𝐹 ∘f +o 𝐺)‘𝑥) +o (𝐻‘𝑥))) |
| 60 | 58, 53, 49, 59 | syl21anc 838 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻)‘𝑥) = (((𝐹 ∘f +o 𝐺)‘𝑥) +o (𝐻‘𝑥))) |
| 61 | 34 | adantr 480 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐺 ∘f +o 𝐻) Fn 𝑋) |
| 62 | | fnfvof 7714 |
. . . 4
⊢ (((𝐹 Fn 𝑋 ∧ (𝐺 ∘f +o 𝐻) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐹 ∘f +o (𝐺 ∘f
+o 𝐻))‘𝑥) = ((𝐹‘𝑥) +o ((𝐺 ∘f +o 𝐻)‘𝑥))) |
| 63 | 47, 61, 49, 62 | syl21anc 838 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o (𝐺 ∘f
+o 𝐻))‘𝑥) = ((𝐹‘𝑥) +o ((𝐺 ∘f +o 𝐻)‘𝑥))) |
| 64 | 57, 60, 63 | 3eqtr4d 2787 |
. 2
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻)‘𝑥) = ((𝐹 ∘f +o (𝐺 ∘f
+o 𝐻))‘𝑥)) |
| 65 | 33, 35, 64 | eqfnfvd 7054 |
1
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → ((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻) = (𝐹 ∘f
+o (𝐺
∘f +o 𝐻))) |