Step | Hyp | Ref
| Expression |
1 | | simpr 486 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋)) |
2 | 1 | eleq2d 2822 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ 𝐹 ∈ dom (ω CNF 𝑋))) |
3 | | eqid 2736 |
. . . . . . . 8
⊢ dom
(ω CNF 𝑋) = dom
(ω CNF 𝑋) |
4 | | omelon 9456 |
. . . . . . . . 9
⊢ ω
∈ On |
5 | 4 | a1i 11 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈
On) |
6 | | simpl 484 |
. . . . . . . 8
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On) |
7 | 3, 5, 6 | cantnfs 9476 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
8 | 2, 7 | bitrd 279 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅))) |
9 | | simpl 484 |
. . . . . . 7
⊢ ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹:𝑋⟶ω) |
10 | 9 | ffnd 6631 |
. . . . . 6
⊢ ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹 Fn 𝑋) |
11 | 8, 10 | syl6bi 253 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 → 𝐹 Fn 𝑋)) |
12 | | simp1 1136 |
. . . . 5
⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) → 𝐹 ∈ 𝑆) |
13 | 11, 12 | impel 507 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐹 Fn 𝑋) |
14 | 1 | eleq2d 2822 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 ↔ 𝐺 ∈ dom (ω CNF 𝑋))) |
15 | 3, 5, 6 | cantnfs 9476 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ dom (ω CNF 𝑋) ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅))) |
16 | 14, 15 | bitrd 279 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅))) |
17 | | simpl 484 |
. . . . . . 7
⊢ ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺:𝑋⟶ω) |
18 | 17 | ffnd 6631 |
. . . . . 6
⊢ ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺 Fn 𝑋) |
19 | 16, 18 | syl6bi 253 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 → 𝐺 Fn 𝑋)) |
20 | | simp2 1137 |
. . . . 5
⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) → 𝐺 ∈ 𝑆) |
21 | 19, 20 | impel 507 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐺 Fn 𝑋) |
22 | 6 | adantr 482 |
. . . 4
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝑋 ∈ On) |
23 | | inidm 4158 |
. . . 4
⊢ (𝑋 ∩ 𝑋) = 𝑋 |
24 | 13, 21, 22, 22, 23 | offn 7578 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → (𝐹 ∘f +o 𝐺) Fn 𝑋) |
25 | 1 | eleq2d 2822 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ 𝑆 ↔ 𝐻 ∈ dom (ω CNF 𝑋))) |
26 | 3, 5, 6 | cantnfs 9476 |
. . . . . 6
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ dom (ω CNF 𝑋) ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅))) |
27 | 25, 26 | bitrd 279 |
. . . . 5
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ 𝑆 ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅))) |
28 | | simpl 484 |
. . . . . 6
⊢ ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻:𝑋⟶ω) |
29 | 28 | ffnd 6631 |
. . . . 5
⊢ ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻 Fn 𝑋) |
30 | 27, 29 | syl6bi 253 |
. . . 4
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ 𝑆 → 𝐻 Fn 𝑋)) |
31 | | simp3 1138 |
. . . 4
⊢ ((𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆) → 𝐻 ∈ 𝑆) |
32 | 30, 31 | impel 507 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐻 Fn 𝑋) |
33 | 24, 32, 22, 22, 23 | offn 7578 |
. 2
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → ((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻) Fn 𝑋) |
34 | 21, 32, 22, 22, 23 | offn 7578 |
. . 3
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → (𝐺 ∘f +o 𝐻) Fn 𝑋) |
35 | 13, 34, 22, 22, 23 | offn 7578 |
. 2
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → (𝐹 ∘f +o (𝐺 ∘f
+o 𝐻)) Fn 𝑋) |
36 | 8, 9 | syl6bi 253 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ 𝑆 → 𝐹:𝑋⟶ω)) |
37 | 36, 12 | impel 507 |
. . . . . 6
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐹:𝑋⟶ω) |
38 | 37 | ffvelcdmda 6993 |
. . . . 5
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ω) |
39 | 16, 17 | syl6bi 253 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ 𝑆 → 𝐺:𝑋⟶ω)) |
40 | 39, 20 | impel 507 |
. . . . . 6
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐺:𝑋⟶ω) |
41 | 40 | ffvelcdmda 6993 |
. . . . 5
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐺‘𝑥) ∈ ω) |
42 | 27, 28 | syl6bi 253 |
. . . . . . 7
⊢ ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ 𝑆 → 𝐻:𝑋⟶ω)) |
43 | 42, 31 | impel 507 |
. . . . . 6
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → 𝐻:𝑋⟶ω) |
44 | 43 | ffvelcdmda 6993 |
. . . . 5
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐻‘𝑥) ∈ ω) |
45 | | nnaass 8484 |
. . . . 5
⊢ (((𝐹‘𝑥) ∈ ω ∧ (𝐺‘𝑥) ∈ ω ∧ (𝐻‘𝑥) ∈ ω) → (((𝐹‘𝑥) +o (𝐺‘𝑥)) +o (𝐻‘𝑥)) = ((𝐹‘𝑥) +o ((𝐺‘𝑥) +o (𝐻‘𝑥)))) |
46 | 38, 41, 44, 45 | syl3anc 1371 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (((𝐹‘𝑥) +o (𝐺‘𝑥)) +o (𝐻‘𝑥)) = ((𝐹‘𝑥) +o ((𝐺‘𝑥) +o (𝐻‘𝑥)))) |
47 | 13 | adantr 482 |
. . . . . 6
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝐹 Fn 𝑋) |
48 | 21 | adantr 482 |
. . . . . 6
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝐺 Fn 𝑋) |
49 | 22 | anim1i 616 |
. . . . . 6
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) |
50 | | fnfvof 7582 |
. . . . . 6
⊢ (((𝐹 Fn 𝑋 ∧ 𝐺 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐹 ∘f +o 𝐺)‘𝑥) = ((𝐹‘𝑥) +o (𝐺‘𝑥))) |
51 | 47, 48, 49, 50 | syl21anc 836 |
. . . . 5
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o 𝐺)‘𝑥) = ((𝐹‘𝑥) +o (𝐺‘𝑥))) |
52 | 51 | oveq1d 7322 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (((𝐹 ∘f +o 𝐺)‘𝑥) +o (𝐻‘𝑥)) = (((𝐹‘𝑥) +o (𝐺‘𝑥)) +o (𝐻‘𝑥))) |
53 | 32 | adantr 482 |
. . . . . 6
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → 𝐻 Fn 𝑋) |
54 | | fnfvof 7582 |
. . . . . 6
⊢ (((𝐺 Fn 𝑋 ∧ 𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐺 ∘f +o 𝐻)‘𝑥) = ((𝐺‘𝑥) +o (𝐻‘𝑥))) |
55 | 48, 53, 49, 54 | syl21anc 836 |
. . . . 5
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐺 ∘f +o 𝐻)‘𝑥) = ((𝐺‘𝑥) +o (𝐻‘𝑥))) |
56 | 55 | oveq2d 7323 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) +o ((𝐺 ∘f +o 𝐻)‘𝑥)) = ((𝐹‘𝑥) +o ((𝐺‘𝑥) +o (𝐻‘𝑥)))) |
57 | 46, 52, 56 | 3eqtr4d 2786 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (((𝐹 ∘f +o 𝐺)‘𝑥) +o (𝐻‘𝑥)) = ((𝐹‘𝑥) +o ((𝐺 ∘f +o 𝐻)‘𝑥))) |
58 | 24 | adantr 482 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐹 ∘f +o 𝐺) Fn 𝑋) |
59 | | fnfvof 7582 |
. . . 4
⊢ ((((𝐹 ∘f
+o 𝐺) Fn 𝑋 ∧ 𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → (((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻)‘𝑥) = (((𝐹 ∘f +o 𝐺)‘𝑥) +o (𝐻‘𝑥))) |
60 | 58, 53, 49, 59 | syl21anc 836 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻)‘𝑥) = (((𝐹 ∘f +o 𝐺)‘𝑥) +o (𝐻‘𝑥))) |
61 | 34 | adantr 482 |
. . . 4
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (𝐺 ∘f +o 𝐻) Fn 𝑋) |
62 | | fnfvof 7582 |
. . . 4
⊢ (((𝐹 Fn 𝑋 ∧ (𝐺 ∘f +o 𝐻) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥 ∈ 𝑋)) → ((𝐹 ∘f +o (𝐺 ∘f
+o 𝐻))‘𝑥) = ((𝐹‘𝑥) +o ((𝐺 ∘f +o 𝐻)‘𝑥))) |
63 | 47, 61, 49, 62 | syl21anc 836 |
. . 3
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → ((𝐹 ∘f +o (𝐺 ∘f
+o 𝐻))‘𝑥) = ((𝐹‘𝑥) +o ((𝐺 ∘f +o 𝐻)‘𝑥))) |
64 | 57, 60, 63 | 3eqtr4d 2786 |
. 2
⊢ ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) ∧ 𝑥 ∈ 𝑋) → (((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻)‘𝑥) = ((𝐹 ∘f +o (𝐺 ∘f
+o 𝐻))‘𝑥)) |
65 | 33, 35, 64 | eqfnfvd 6944 |
1
⊢ (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹 ∈ 𝑆 ∧ 𝐺 ∈ 𝑆 ∧ 𝐻 ∈ 𝑆)) → ((𝐹 ∘f +o 𝐺) ∘f
+o 𝐻) = (𝐹 ∘f
+o (𝐺
∘f +o 𝐻))) |