Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnfass Structured version   Visualization version   GIF version

Theorem naddcnfass 41286
Description: Component-wise addition of Cantor normal forms is associative. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
naddcnfass (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))

Proof of Theorem naddcnfass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 485 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
21eleq2d 2822 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 ∈ dom (ω CNF 𝑋)))
3 eqid 2736 . . . . . . . 8 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
4 omelon 9481 . . . . . . . . 9 ω ∈ On
54a1i 11 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
6 simpl 483 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73, 5, 6cantnfs 9501 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
82, 7bitrd 278 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
9 simpl 483 . . . . . . 7 ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹:𝑋⟶ω)
109ffnd 6638 . . . . . 6 ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹 Fn 𝑋)
118, 10syl6bi 252 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 Fn 𝑋))
12 simp1 1135 . . . . 5 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐹𝑆)
1311, 12impel 506 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐹 Fn 𝑋)
141eleq2d 2822 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺 ∈ dom (ω CNF 𝑋)))
153, 5, 6cantnfs 9501 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ dom (ω CNF 𝑋) ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
1614, 15bitrd 278 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆 ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
17 simpl 483 . . . . . . 7 ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺:𝑋⟶ω)
1817ffnd 6638 . . . . . 6 ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺 Fn 𝑋)
1916, 18syl6bi 252 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺 Fn 𝑋))
20 simp2 1136 . . . . 5 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐺𝑆)
2119, 20impel 506 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐺 Fn 𝑋)
226adantr 481 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝑋 ∈ On)
23 inidm 4162 . . . 4 (𝑋𝑋) = 𝑋
2413, 21, 22, 22, 23offn 7587 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐹f +o 𝐺) Fn 𝑋)
251eleq2d 2822 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻 ∈ dom (ω CNF 𝑋)))
263, 5, 6cantnfs 9501 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ dom (ω CNF 𝑋) ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅)))
2725, 26bitrd 278 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆 ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅)))
28 simpl 483 . . . . . 6 ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻:𝑋⟶ω)
2928ffnd 6638 . . . . 5 ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻 Fn 𝑋)
3027, 29syl6bi 252 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻 Fn 𝑋))
31 simp3 1137 . . . 4 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐻𝑆)
3230, 31impel 506 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐻 Fn 𝑋)
3324, 32, 22, 22, 23offn 7587 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) Fn 𝑋)
3421, 32, 22, 22, 23offn 7587 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐺f +o 𝐻) Fn 𝑋)
3513, 34, 22, 22, 23offn 7587 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐹f +o (𝐺f +o 𝐻)) Fn 𝑋)
368, 9syl6bi 252 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹:𝑋⟶ω))
3736, 12impel 506 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐹:𝑋⟶ω)
3837ffvelcdmda 7000 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ω)
3916, 17syl6bi 252 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺:𝑋⟶ω))
4039, 20impel 506 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐺:𝑋⟶ω)
4140ffvelcdmda 7000 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐺𝑥) ∈ ω)
4227, 28syl6bi 252 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻:𝑋⟶ω))
4342, 31impel 506 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐻:𝑋⟶ω)
4443ffvelcdmda 7000 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐻𝑥) ∈ ω)
45 nnaass 8502 . . . . 5 (((𝐹𝑥) ∈ ω ∧ (𝐺𝑥) ∈ ω ∧ (𝐻𝑥) ∈ ω) → (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
4638, 41, 44, 45syl3anc 1370 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
4713adantr 481 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐹 Fn 𝑋)
4821adantr 481 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐺 Fn 𝑋)
4922anim1i 615 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝑋 ∈ On ∧ 𝑥𝑋))
50 fnfvof 7591 . . . . . 6 (((𝐹 Fn 𝑋𝐺 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
5147, 48, 49, 50syl21anc 835 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
5251oveq1d 7331 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)) = (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)))
5332adantr 481 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐻 Fn 𝑋)
54 fnfvof 7591 . . . . . 6 (((𝐺 Fn 𝑋𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐺f +o 𝐻)‘𝑥) = ((𝐺𝑥) +o (𝐻𝑥)))
5548, 53, 49, 54syl21anc 835 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐺f +o 𝐻)‘𝑥) = ((𝐺𝑥) +o (𝐻𝑥)))
5655oveq2d 7332 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
5746, 52, 563eqtr4d 2786 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
5824adantr 481 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐹f +o 𝐺) Fn 𝑋)
59 fnfvof 7591 . . . 4 ((((𝐹f +o 𝐺) Fn 𝑋𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)))
6058, 53, 49, 59syl21anc 835 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)))
6134adantr 481 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐺f +o 𝐻) Fn 𝑋)
62 fnfvof 7591 . . . 4 (((𝐹 Fn 𝑋 ∧ (𝐺f +o 𝐻) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑥) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
6347, 61, 49, 62syl21anc 835 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑥) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
6457, 60, 633eqtr4d 2786 . 2 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = ((𝐹f +o (𝐺f +o 𝐻))‘𝑥))
6533, 35, 64eqfnfvd 6951 1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1540  wcel 2105  c0 4266   class class class wbr 5086  dom cdm 5607  Oncon0 6288   Fn wfn 6460  wf 6461  cfv 6465  (class class class)co 7316  f cof 7572  ωcom 7758   +o coa 8342   finSupp cfsupp 9204   CNF ccnf 9496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5223  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-inf2 9476
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7319  df-oprab 7320  df-mpo 7321  df-of 7574  df-om 7759  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-seqom 8327  df-oadd 8349  df-map 8666  df-cnf 9497
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator