Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  naddcnfass Structured version   Visualization version   GIF version

Theorem naddcnfass 43467
Description: Component-wise addition of Cantor normal forms is associative. (Contributed by RP, 3-Jan-2025.)
Assertion
Ref Expression
naddcnfass (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))

Proof of Theorem naddcnfass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpr 484 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑆 = dom (ω CNF 𝑋))
21eleq2d 2817 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 ∈ dom (ω CNF 𝑋)))
3 eqid 2731 . . . . . . . 8 dom (ω CNF 𝑋) = dom (ω CNF 𝑋)
4 omelon 9542 . . . . . . . . 9 ω ∈ On
54a1i 11 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → ω ∈ On)
6 simpl 482 . . . . . . . 8 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → 𝑋 ∈ On)
73, 5, 6cantnfs 9562 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹 ∈ dom (ω CNF 𝑋) ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
82, 7bitrd 279 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆 ↔ (𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅)))
9 simpl 482 . . . . . . 7 ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹:𝑋⟶ω)
109ffnd 6658 . . . . . 6 ((𝐹:𝑋⟶ω ∧ 𝐹 finSupp ∅) → 𝐹 Fn 𝑋)
118, 10biimtrdi 253 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹 Fn 𝑋))
12 simp1 1136 . . . . 5 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐹𝑆)
1311, 12impel 505 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐹 Fn 𝑋)
141eleq2d 2817 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺 ∈ dom (ω CNF 𝑋)))
153, 5, 6cantnfs 9562 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺 ∈ dom (ω CNF 𝑋) ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
1614, 15bitrd 279 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆 ↔ (𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅)))
17 simpl 482 . . . . . . 7 ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺:𝑋⟶ω)
1817ffnd 6658 . . . . . 6 ((𝐺:𝑋⟶ω ∧ 𝐺 finSupp ∅) → 𝐺 Fn 𝑋)
1916, 18biimtrdi 253 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺 Fn 𝑋))
20 simp2 1137 . . . . 5 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐺𝑆)
2119, 20impel 505 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐺 Fn 𝑋)
226adantr 480 . . . 4 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝑋 ∈ On)
23 inidm 4176 . . . 4 (𝑋𝑋) = 𝑋
2413, 21, 22, 22, 23offn 7629 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐹f +o 𝐺) Fn 𝑋)
251eleq2d 2817 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻 ∈ dom (ω CNF 𝑋)))
263, 5, 6cantnfs 9562 . . . . . 6 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻 ∈ dom (ω CNF 𝑋) ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅)))
2725, 26bitrd 279 . . . . 5 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆 ↔ (𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅)))
28 simpl 482 . . . . . 6 ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻:𝑋⟶ω)
2928ffnd 6658 . . . . 5 ((𝐻:𝑋⟶ω ∧ 𝐻 finSupp ∅) → 𝐻 Fn 𝑋)
3027, 29biimtrdi 253 . . . 4 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻 Fn 𝑋))
31 simp3 1138 . . . 4 ((𝐹𝑆𝐺𝑆𝐻𝑆) → 𝐻𝑆)
3230, 31impel 505 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐻 Fn 𝑋)
3324, 32, 22, 22, 23offn 7629 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) Fn 𝑋)
3421, 32, 22, 22, 23offn 7629 . . 3 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐺f +o 𝐻) Fn 𝑋)
3513, 34, 22, 22, 23offn 7629 . 2 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → (𝐹f +o (𝐺f +o 𝐻)) Fn 𝑋)
368, 9biimtrdi 253 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐹𝑆𝐹:𝑋⟶ω))
3736, 12impel 505 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐹:𝑋⟶ω)
3837ffvelcdmda 7023 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐹𝑥) ∈ ω)
3916, 17biimtrdi 253 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐺𝑆𝐺:𝑋⟶ω))
4039, 20impel 505 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐺:𝑋⟶ω)
4140ffvelcdmda 7023 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐺𝑥) ∈ ω)
4227, 28biimtrdi 253 . . . . . . 7 ((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) → (𝐻𝑆𝐻:𝑋⟶ω))
4342, 31impel 505 . . . . . 6 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → 𝐻:𝑋⟶ω)
4443ffvelcdmda 7023 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐻𝑥) ∈ ω)
45 nnaass 8543 . . . . 5 (((𝐹𝑥) ∈ ω ∧ (𝐺𝑥) ∈ ω ∧ (𝐻𝑥) ∈ ω) → (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
4638, 41, 44, 45syl3anc 1373 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
4713adantr 480 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐹 Fn 𝑋)
4821adantr 480 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐺 Fn 𝑋)
4922anim1i 615 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝑋 ∈ On ∧ 𝑥𝑋))
50 fnfvof 7633 . . . . . 6 (((𝐹 Fn 𝑋𝐺 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
5147, 48, 49, 50syl21anc 837 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o 𝐺)‘𝑥) = ((𝐹𝑥) +o (𝐺𝑥)))
5251oveq1d 7367 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)) = (((𝐹𝑥) +o (𝐺𝑥)) +o (𝐻𝑥)))
5332adantr 480 . . . . . 6 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → 𝐻 Fn 𝑋)
54 fnfvof 7633 . . . . . 6 (((𝐺 Fn 𝑋𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐺f +o 𝐻)‘𝑥) = ((𝐺𝑥) +o (𝐻𝑥)))
5548, 53, 49, 54syl21anc 837 . . . . 5 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐺f +o 𝐻)‘𝑥) = ((𝐺𝑥) +o (𝐻𝑥)))
5655oveq2d 7368 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)) = ((𝐹𝑥) +o ((𝐺𝑥) +o (𝐻𝑥))))
5746, 52, 563eqtr4d 2776 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
5824adantr 480 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐹f +o 𝐺) Fn 𝑋)
59 fnfvof 7633 . . . 4 ((((𝐹f +o 𝐺) Fn 𝑋𝐻 Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)))
6058, 53, 49, 59syl21anc 837 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = (((𝐹f +o 𝐺)‘𝑥) +o (𝐻𝑥)))
6134adantr 480 . . . 4 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (𝐺f +o 𝐻) Fn 𝑋)
62 fnfvof 7633 . . . 4 (((𝐹 Fn 𝑋 ∧ (𝐺f +o 𝐻) Fn 𝑋) ∧ (𝑋 ∈ On ∧ 𝑥𝑋)) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑥) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
6347, 61, 49, 62syl21anc 837 . . 3 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → ((𝐹f +o (𝐺f +o 𝐻))‘𝑥) = ((𝐹𝑥) +o ((𝐺f +o 𝐻)‘𝑥)))
6457, 60, 633eqtr4d 2776 . 2 ((((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) ∧ 𝑥𝑋) → (((𝐹f +o 𝐺) ∘f +o 𝐻)‘𝑥) = ((𝐹f +o (𝐺f +o 𝐻))‘𝑥))
6533, 35, 64eqfnfvd 6973 1 (((𝑋 ∈ On ∧ 𝑆 = dom (ω CNF 𝑋)) ∧ (𝐹𝑆𝐺𝑆𝐻𝑆)) → ((𝐹f +o 𝐺) ∘f +o 𝐻) = (𝐹f +o (𝐺f +o 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  c0 4282   class class class wbr 5093  dom cdm 5619  Oncon0 6312   Fn wfn 6482  wf 6483  cfv 6487  (class class class)co 7352  f cof 7614  ωcom 7802   +o coa 8388   finSupp cfsupp 9251   CNF ccnf 9557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9537
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-seqom 8373  df-oadd 8395  df-map 8758  df-cnf 9558
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator