![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uzrdglem | Structured version Visualization version GIF version |
Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
uzrdg.1 | ⊢ 𝐴 ∈ V |
uzrdg.2 | ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) |
Ref | Expression |
---|---|
uzrdglem | ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → ⟨𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))⟩ ∈ ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.1 | . . . . . 6 ⊢ 𝐶 ∈ ℤ | |
2 | om2uz.2 | . . . . . 6 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | 1, 2 | om2uzf1oi 13914 | . . . . 5 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
4 | f1ocnvdm 7279 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ ω) | |
5 | 3, 4 | mpan 688 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (◡𝐺‘𝐵) ∈ ω) |
6 | uzrdg.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
7 | uzrdg.2 | . . . . 5 ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) | |
8 | 1, 2, 6, 7 | om2uzrdg 13917 | . . . 4 ⊢ ((◡𝐺‘𝐵) ∈ ω → (𝑅‘(◡𝐺‘𝐵)) = ⟨(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))⟩) |
9 | 5, 8 | syl 17 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑅‘(◡𝐺‘𝐵)) = ⟨(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))⟩) |
10 | f1ocnvfv2 7271 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) | |
11 | 3, 10 | mpan 688 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
12 | 11 | opeq1d 4878 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → ⟨(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))⟩ = ⟨𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))⟩) |
13 | 9, 12 | eqtrd 2772 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑅‘(◡𝐺‘𝐵)) = ⟨𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))⟩) |
14 | frfnom 8431 | . . . 4 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω | |
15 | 7 | fneq1i 6643 | . . . 4 ⊢ (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ ⟨(𝑥 + 1), (𝑥𝐹𝑦)⟩), ⟨𝐶, 𝐴⟩) ↾ ω) Fn ω) |
16 | 14, 15 | mpbir 230 | . . 3 ⊢ 𝑅 Fn ω |
17 | fnfvelrn 7079 | . . 3 ⊢ ((𝑅 Fn ω ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) | |
18 | 16, 5, 17 | sylancr 587 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) |
19 | 13, 18 | eqeltrrd 2834 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → ⟨𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))⟩ ∈ ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ⟨cop 4633 ↦ cmpt 5230 ◡ccnv 5674 ran crn 5676 ↾ cres 5677 Fn wfn 6535 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7405 ∈ cmpo 7407 ωcom 7851 2nd c2nd 7970 reccrdg 8405 1c1 11107 + caddc 11109 ℤcz 12554 ℤ≥cuz 12818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-n0 12469 df-z 12555 df-uz 12819 |
This theorem is referenced by: uzrdgfni 13919 uzrdgsuci 13921 |
Copyright terms: Public domain | W3C validator |