| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uzrdglem | Structured version Visualization version GIF version | ||
| Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
| Ref | Expression |
|---|---|
| om2uz.1 | ⊢ 𝐶 ∈ ℤ |
| om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
| uzrdg.1 | ⊢ 𝐴 ∈ V |
| uzrdg.2 | ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) |
| Ref | Expression |
|---|---|
| uzrdglem | ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | om2uz.1 | . . . . . 6 ⊢ 𝐶 ∈ ℤ | |
| 2 | om2uz.2 | . . . . . 6 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
| 3 | 1, 2 | om2uzf1oi 13860 | . . . . 5 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
| 4 | f1ocnvdm 7219 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ ω) | |
| 5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (◡𝐺‘𝐵) ∈ ω) |
| 6 | uzrdg.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 7 | uzrdg.2 | . . . . 5 ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) | |
| 8 | 1, 2, 6, 7 | om2uzrdg 13863 | . . . 4 ⊢ ((◡𝐺‘𝐵) ∈ ω → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 9 | 5, 8 | syl 17 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 10 | f1ocnvfv2 7211 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) | |
| 11 | 3, 10 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
| 12 | 11 | opeq1d 4828 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 13 | 9, 12 | eqtrd 2766 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑅‘(◡𝐺‘𝐵)) = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
| 14 | frfnom 8354 | . . . 4 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
| 15 | 7 | fneq1i 6578 | . . . 4 ⊢ (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω) |
| 16 | 14, 15 | mpbir 231 | . . 3 ⊢ 𝑅 Fn ω |
| 17 | fnfvelrn 7013 | . . 3 ⊢ ((𝑅 Fn ω ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) | |
| 18 | 16, 5, 17 | sylancr 587 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) |
| 19 | 13, 18 | eqeltrrd 2832 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 〈cop 4579 ↦ cmpt 5170 ◡ccnv 5613 ran crn 5615 ↾ cres 5616 Fn wfn 6476 –1-1-onto→wf1o 6480 ‘cfv 6481 (class class class)co 7346 ∈ cmpo 7348 ωcom 7796 2nd c2nd 7920 reccrdg 8328 1c1 11007 + caddc 11009 ℤcz 12468 ℤ≥cuz 12732 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 |
| This theorem is referenced by: uzrdgfni 13865 uzrdgsuci 13867 |
| Copyright terms: Public domain | W3C validator |