Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uzrdglem | Structured version Visualization version GIF version |
Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Mario Carneiro, 26-Jun-2013.) (Revised by Mario Carneiro, 18-Nov-2014.) |
Ref | Expression |
---|---|
om2uz.1 | ⊢ 𝐶 ∈ ℤ |
om2uz.2 | ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) |
uzrdg.1 | ⊢ 𝐴 ∈ V |
uzrdg.2 | ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) |
Ref | Expression |
---|---|
uzrdglem | ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.1 | . . . . . 6 ⊢ 𝐶 ∈ ℤ | |
2 | om2uz.2 | . . . . . 6 ⊢ 𝐺 = (rec((𝑥 ∈ V ↦ (𝑥 + 1)), 𝐶) ↾ ω) | |
3 | 1, 2 | om2uzf1oi 13412 | . . . . 5 ⊢ 𝐺:ω–1-1-onto→(ℤ≥‘𝐶) |
4 | f1ocnvdm 7052 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (◡𝐺‘𝐵) ∈ ω) | |
5 | 3, 4 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (◡𝐺‘𝐵) ∈ ω) |
6 | uzrdg.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
7 | uzrdg.2 | . . . . 5 ⊢ 𝑅 = (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) | |
8 | 1, 2, 6, 7 | om2uzrdg 13415 | . . . 4 ⊢ ((◡𝐺‘𝐵) ∈ ω → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
9 | 5, 8 | syl 17 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑅‘(◡𝐺‘𝐵)) = 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
10 | f1ocnvfv2 7045 | . . . . 5 ⊢ ((𝐺:ω–1-1-onto→(ℤ≥‘𝐶) ∧ 𝐵 ∈ (ℤ≥‘𝐶)) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) | |
11 | 3, 10 | mpan 690 | . . . 4 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝐺‘(◡𝐺‘𝐵)) = 𝐵) |
12 | 11 | opeq1d 4767 | . . 3 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → 〈(𝐺‘(◡𝐺‘𝐵)), (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
13 | 9, 12 | eqtrd 2773 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑅‘(◡𝐺‘𝐵)) = 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉) |
14 | frfnom 8099 | . . . 4 ⊢ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω | |
15 | 7 | fneq1i 6435 | . . . 4 ⊢ (𝑅 Fn ω ↔ (rec((𝑥 ∈ V, 𝑦 ∈ V ↦ 〈(𝑥 + 1), (𝑥𝐹𝑦)〉), 〈𝐶, 𝐴〉) ↾ ω) Fn ω) |
16 | 14, 15 | mpbir 234 | . . 3 ⊢ 𝑅 Fn ω |
17 | fnfvelrn 6858 | . . 3 ⊢ ((𝑅 Fn ω ∧ (◡𝐺‘𝐵) ∈ ω) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) | |
18 | 16, 5, 17 | sylancr 590 | . 2 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → (𝑅‘(◡𝐺‘𝐵)) ∈ ran 𝑅) |
19 | 13, 18 | eqeltrrd 2834 | 1 ⊢ (𝐵 ∈ (ℤ≥‘𝐶) → 〈𝐵, (2nd ‘(𝑅‘(◡𝐺‘𝐵)))〉 ∈ ran 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2114 Vcvv 3398 〈cop 4522 ↦ cmpt 5110 ◡ccnv 5524 ran crn 5526 ↾ cres 5527 Fn wfn 6334 –1-1-onto→wf1o 6338 ‘cfv 6339 (class class class)co 7170 ∈ cmpo 7172 ωcom 7599 2nd c2nd 7713 reccrdg 8074 1c1 10616 + caddc 10618 ℤcz 12062 ℤ≥cuz 12324 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-uni 4797 df-iun 4883 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-om 7600 df-2nd 7715 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-er 8320 df-en 8556 df-dom 8557 df-sdom 8558 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-n0 11977 df-z 12063 df-uz 12325 |
This theorem is referenced by: uzrdgfni 13417 uzrdgsuci 13419 |
Copyright terms: Public domain | W3C validator |