MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwmodn Structured version   Visualization version   GIF version

Theorem cshwmodn 14518
Description: Cyclically shifting a word is invariant regarding modulo the word's length. (Contributed by AV, 26-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.)
Assertion
Ref Expression
cshwmodn ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))

Proof of Theorem cshwmodn
StepHypRef Expression
1 0csh0 14516 . . . 4 (∅ cyclShift 𝑁) = ∅
2 oveq1 7274 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (∅ cyclShift 𝑁))
3 oveq1 7274 . . . . 5 (𝑊 = ∅ → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = (∅ cyclShift (𝑁 mod (♯‘𝑊))))
4 0csh0 14516 . . . . 5 (∅ cyclShift (𝑁 mod (♯‘𝑊))) = ∅
53, 4eqtrdi 2794 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ∅)
61, 2, 53eqtr4a 2804 . . 3 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
76a1d 25 . 2 (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊)))))
8 lennncl 14247 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
98ex 413 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → (♯‘𝑊) ∈ ℕ))
109adantr 481 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 ≠ ∅ → (♯‘𝑊) ∈ ℕ))
1110impcom 408 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℕ)
12 simprr 770 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
13 zre 12333 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 nnrp 12751 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
15 modabs2 13635 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)) = (𝑁 mod (♯‘𝑊)))
1613, 14, 15syl2anr 597 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)) = (𝑁 mod (♯‘𝑊)))
1716opeq1d 4810 . . . . . . 7 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩ = ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)
1817oveq2d 7283 . . . . . 6 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) = (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))
1916oveq2d 7283 . . . . . 6 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊))) = (𝑊 prefix (𝑁 mod (♯‘𝑊))))
2018, 19oveq12d 7285 . . . . 5 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2111, 12, 20syl2anc 584 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
22 simprl 768 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑊 ∈ Word 𝑉)
2312, 11zmodcld 13622 . . . . . 6 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
2423nn0zd 12434 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
25 cshword 14514 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ ℤ) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))))
2622, 24, 25syl2anc 584 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))))
27 cshword 14514 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2827adantl 482 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2921, 26, 283eqtr4rd 2789 . . 3 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
3029ex 413 . 2 (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊)))))
317, 30pm2.61ine 3028 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  c0 4256  cop 4567  cfv 6426  (class class class)co 7267  cr 10880  cn 11983  cz 12329  +crp 12740   mod cmo 13599  chash 14054  Word cword 14227   ++ cconcat 14283   substr csubstr 14363   prefix cpfx 14393   cyclShift ccsh 14511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958  ax-pre-sup 10959
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-1st 7820  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-1o 8284  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-fin 8724  df-sup 9188  df-inf 9189  df-card 9707  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-div 11643  df-nn 11984  df-n0 12244  df-z 12330  df-uz 12593  df-rp 12741  df-fz 13250  df-fzo 13393  df-fl 13522  df-mod 13600  df-hash 14055  df-word 14228  df-concat 14284  df-substr 14364  df-pfx 14394  df-csh 14512
This theorem is referenced by:  cshwsublen  14519  cshwn  14520  1cshid  31239
  Copyright terms: Public domain W3C validator