MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwmodn Structured version   Visualization version   GIF version

Theorem cshwmodn 14745
Description: Cyclically shifting a word is invariant regarding modulo the word's length. (Contributed by AV, 26-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.)
Assertion
Ref Expression
cshwmodn ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))

Proof of Theorem cshwmodn
StepHypRef Expression
1 0csh0 14743 . . . 4 (∅ cyclShift 𝑁) = ∅
2 oveq1 7416 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (∅ cyclShift 𝑁))
3 oveq1 7416 . . . . 5 (𝑊 = ∅ → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = (∅ cyclShift (𝑁 mod (♯‘𝑊))))
4 0csh0 14743 . . . . 5 (∅ cyclShift (𝑁 mod (♯‘𝑊))) = ∅
53, 4eqtrdi 2789 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ∅)
61, 2, 53eqtr4a 2799 . . 3 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
76a1d 25 . 2 (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊)))))
8 lennncl 14484 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
98ex 414 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → (♯‘𝑊) ∈ ℕ))
109adantr 482 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 ≠ ∅ → (♯‘𝑊) ∈ ℕ))
1110impcom 409 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℕ)
12 simprr 772 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
13 zre 12562 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 nnrp 12985 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
15 modabs2 13870 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)) = (𝑁 mod (♯‘𝑊)))
1613, 14, 15syl2anr 598 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)) = (𝑁 mod (♯‘𝑊)))
1716opeq1d 4880 . . . . . . 7 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩ = ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)
1817oveq2d 7425 . . . . . 6 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) = (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))
1916oveq2d 7425 . . . . . 6 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊))) = (𝑊 prefix (𝑁 mod (♯‘𝑊))))
2018, 19oveq12d 7427 . . . . 5 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2111, 12, 20syl2anc 585 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
22 simprl 770 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑊 ∈ Word 𝑉)
2312, 11zmodcld 13857 . . . . . 6 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
2423nn0zd 12584 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
25 cshword 14741 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ ℤ) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))))
2622, 24, 25syl2anc 585 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))))
27 cshword 14741 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2827adantl 483 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2921, 26, 283eqtr4rd 2784 . . 3 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
3029ex 414 . 2 (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊)))))
317, 30pm2.61ine 3026 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  c0 4323  cop 4635  cfv 6544  (class class class)co 7409  cr 11109  cn 12212  cz 12558  +crp 12974   mod cmo 13834  chash 14290  Word cword 14464   ++ cconcat 14520   substr csubstr 14590   prefix cpfx 14620   cyclShift ccsh 14738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187  ax-pre-sup 11188
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-1st 7975  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-sup 9437  df-inf 9438  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-div 11872  df-nn 12213  df-n0 12473  df-z 12559  df-uz 12823  df-rp 12975  df-fz 13485  df-fzo 13628  df-fl 13757  df-mod 13835  df-hash 14291  df-word 14465  df-concat 14521  df-substr 14591  df-pfx 14621  df-csh 14739
This theorem is referenced by:  cshwsublen  14746  cshwn  14747  1cshid  32123
  Copyright terms: Public domain W3C validator