MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwmodn Structured version   Visualization version   GIF version

Theorem cshwmodn 14843
Description: Cyclically shifting a word is invariant regarding modulo the word's length. (Contributed by AV, 26-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.)
Assertion
Ref Expression
cshwmodn ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))

Proof of Theorem cshwmodn
StepHypRef Expression
1 0csh0 14841 . . . 4 (∅ cyclShift 𝑁) = ∅
2 oveq1 7455 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (∅ cyclShift 𝑁))
3 oveq1 7455 . . . . 5 (𝑊 = ∅ → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = (∅ cyclShift (𝑁 mod (♯‘𝑊))))
4 0csh0 14841 . . . . 5 (∅ cyclShift (𝑁 mod (♯‘𝑊))) = ∅
53, 4eqtrdi 2796 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ∅)
61, 2, 53eqtr4a 2806 . . 3 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
76a1d 25 . 2 (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊)))))
8 lennncl 14582 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
98ex 412 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → (♯‘𝑊) ∈ ℕ))
109adantr 480 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 ≠ ∅ → (♯‘𝑊) ∈ ℕ))
1110impcom 407 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℕ)
12 simprr 772 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
13 zre 12643 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 nnrp 13068 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
15 modabs2 13956 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)) = (𝑁 mod (♯‘𝑊)))
1613, 14, 15syl2anr 596 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)) = (𝑁 mod (♯‘𝑊)))
1716opeq1d 4903 . . . . . . 7 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩ = ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)
1817oveq2d 7464 . . . . . 6 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) = (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))
1916oveq2d 7464 . . . . . 6 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊))) = (𝑊 prefix (𝑁 mod (♯‘𝑊))))
2018, 19oveq12d 7466 . . . . 5 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2111, 12, 20syl2anc 583 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
22 simprl 770 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑊 ∈ Word 𝑉)
2312, 11zmodcld 13943 . . . . . 6 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
2423nn0zd 12665 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
25 cshword 14839 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ ℤ) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))))
2622, 24, 25syl2anc 583 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))))
27 cshword 14839 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2827adantl 481 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2921, 26, 283eqtr4rd 2791 . . 3 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
3029ex 412 . 2 (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊)))))
317, 30pm2.61ine 3031 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  c0 4352  cop 4654  cfv 6573  (class class class)co 7448  cr 11183  cn 12293  cz 12639  +crp 13057   mod cmo 13920  chash 14379  Word cword 14562   ++ cconcat 14618   substr csubstr 14688   prefix cpfx 14718   cyclShift ccsh 14836
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-hash 14380  df-word 14563  df-concat 14619  df-substr 14689  df-pfx 14719  df-csh 14837
This theorem is referenced by:  cshwsublen  14844  cshwn  14845  1cshid  32926
  Copyright terms: Public domain W3C validator