MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cshwmodn Structured version   Visualization version   GIF version

Theorem cshwmodn 14148
Description: Cyclically shifting a word is invariant regarding modulo the word's length. (Contributed by AV, 26-Oct-2018.) (Proof shortened by AV, 16-Oct-2022.)
Assertion
Ref Expression
cshwmodn ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))

Proof of Theorem cshwmodn
StepHypRef Expression
1 0csh0 14146 . . . 4 (∅ cyclShift 𝑁) = ∅
2 oveq1 7147 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (∅ cyclShift 𝑁))
3 oveq1 7147 . . . . 5 (𝑊 = ∅ → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = (∅ cyclShift (𝑁 mod (♯‘𝑊))))
4 0csh0 14146 . . . . 5 (∅ cyclShift (𝑁 mod (♯‘𝑊))) = ∅
53, 4syl6eq 2873 . . . 4 (𝑊 = ∅ → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ∅)
61, 2, 53eqtr4a 2883 . . 3 (𝑊 = ∅ → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
76a1d 25 . 2 (𝑊 = ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊)))))
8 lennncl 13877 . . . . . . . 8 ((𝑊 ∈ Word 𝑉𝑊 ≠ ∅) → (♯‘𝑊) ∈ ℕ)
98ex 416 . . . . . . 7 (𝑊 ∈ Word 𝑉 → (𝑊 ≠ ∅ → (♯‘𝑊) ∈ ℕ))
109adantr 484 . . . . . 6 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 ≠ ∅ → (♯‘𝑊) ∈ ℕ))
1110impcom 411 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (♯‘𝑊) ∈ ℕ)
12 simprr 772 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
13 zre 11973 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
14 nnrp 12388 . . . . . . . . 9 ((♯‘𝑊) ∈ ℕ → (♯‘𝑊) ∈ ℝ+)
15 modabs2 13268 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ (♯‘𝑊) ∈ ℝ+) → ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)) = (𝑁 mod (♯‘𝑊)))
1613, 14, 15syl2anr 599 . . . . . . . 8 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)) = (𝑁 mod (♯‘𝑊)))
1716opeq1d 4784 . . . . . . 7 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩ = ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩)
1817oveq2d 7156 . . . . . 6 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) = (𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩))
1916oveq2d 7156 . . . . . 6 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊))) = (𝑊 prefix (𝑁 mod (♯‘𝑊))))
2018, 19oveq12d 7158 . . . . 5 (((♯‘𝑊) ∈ ℕ ∧ 𝑁 ∈ ℤ) → ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2111, 12, 20syl2anc 587 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
22 simprl 770 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → 𝑊 ∈ Word 𝑉)
2312, 11zmodcld 13255 . . . . . 6 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) ∈ ℕ0)
2423nn0zd 12073 . . . . 5 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑁 mod (♯‘𝑊)) ∈ ℤ)
25 cshword 14144 . . . . 5 ((𝑊 ∈ Word 𝑉 ∧ (𝑁 mod (♯‘𝑊)) ∈ ℤ) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))))
2622, 24, 25syl2anc 587 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift (𝑁 mod (♯‘𝑊))) = ((𝑊 substr ⟨((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix ((𝑁 mod (♯‘𝑊)) mod (♯‘𝑊)))))
27 cshword 14144 . . . . 5 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2827adantl 485 . . . 4 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = ((𝑊 substr ⟨(𝑁 mod (♯‘𝑊)), (♯‘𝑊)⟩) ++ (𝑊 prefix (𝑁 mod (♯‘𝑊)))))
2921, 26, 283eqtr4rd 2868 . . 3 ((𝑊 ≠ ∅ ∧ (𝑊 ∈ Word 𝑉𝑁 ∈ ℤ)) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
3029ex 416 . 2 (𝑊 ≠ ∅ → ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊)))))
317, 30pm2.61ine 3094 1 ((𝑊 ∈ Word 𝑉𝑁 ∈ ℤ) → (𝑊 cyclShift 𝑁) = (𝑊 cyclShift (𝑁 mod (♯‘𝑊))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2114  wne 3011  c0 4265  cop 4545  cfv 6334  (class class class)co 7140  cr 10525  cn 11625  cz 11969  +crp 12377   mod cmo 13232  chash 13686  Word cword 13857   ++ cconcat 13913   substr csubstr 13993   prefix cpfx 14023   cyclShift ccsh 14141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2178  ax-ext 2794  ax-rep 5166  ax-sep 5179  ax-nul 5186  ax-pow 5243  ax-pr 5307  ax-un 7446  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2801  df-cleq 2815  df-clel 2894  df-nfc 2962  df-ne 3012  df-nel 3116  df-ral 3135  df-rex 3136  df-reu 3137  df-rmo 3138  df-rab 3139  df-v 3471  df-sbc 3748  df-csb 3856  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4266  df-if 4440  df-pw 4513  df-sn 4540  df-pr 4542  df-tp 4544  df-op 4546  df-uni 4814  df-int 4852  df-iun 4896  df-br 5043  df-opab 5105  df-mpt 5123  df-tr 5149  df-id 5437  df-eprel 5442  df-po 5451  df-so 5452  df-fr 5491  df-we 5493  df-xp 5538  df-rel 5539  df-cnv 5540  df-co 5541  df-dm 5542  df-rn 5543  df-res 5544  df-ima 5545  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6293  df-fun 6336  df-fn 6337  df-f 6338  df-f1 6339  df-fo 6340  df-f1o 6341  df-fv 6342  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-om 7566  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-sup 8894  df-inf 8895  df-card 9356  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-fl 13157  df-mod 13233  df-hash 13687  df-word 13858  df-concat 13914  df-substr 13994  df-pfx 14024  df-csh 14142
This theorem is referenced by:  cshwsublen  14149  cshwn  14150  1cshid  30643
  Copyright terms: Public domain W3C validator