| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mstri3 | Structured version Visualization version GIF version | ||
| Description: Triangle inequality for the distance function of a metric space. (Contributed by Mario Carneiro, 2-Oct-2015.) |
| Ref | Expression |
|---|---|
| mscl.x | ⊢ 𝑋 = (Base‘𝑀) |
| mscl.d | ⊢ 𝐷 = (dist‘𝑀) |
| Ref | Expression |
|---|---|
| mstri3 | ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mscl.x | . . . 4 ⊢ 𝑋 = (Base‘𝑀) | |
| 2 | mscl.d | . . . 4 ⊢ 𝐷 = (dist‘𝑀) | |
| 3 | 1, 2 | msmet2 24348 | . . 3 ⊢ (𝑀 ∈ MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋)) |
| 4 | mettri3 24242 | . . 3 ⊢ (((𝐷 ↾ (𝑋 × 𝑋)) ∈ (Met‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) + (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶))) | |
| 5 | 3, 4 | sylan 580 | . 2 ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) + (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶))) |
| 6 | simpr1 1195 | . . 3 ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐴 ∈ 𝑋) | |
| 7 | simpr2 1196 | . . 3 ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐵 ∈ 𝑋) | |
| 8 | 6, 7 | ovresd 7556 | . 2 ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵)) |
| 9 | simpr3 1197 | . . . 4 ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → 𝐶 ∈ 𝑋) | |
| 10 | 6, 9 | ovresd 7556 | . . 3 ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) = (𝐴𝐷𝐶)) |
| 11 | 7, 9 | ovresd 7556 | . . 3 ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶) = (𝐵𝐷𝐶)) |
| 12 | 10, 11 | oveq12d 7405 | . 2 ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) + (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶)) = ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) |
| 13 | 5, 8, 12 | 3brtr3d 5138 | 1 ⊢ ((𝑀 ∈ MetSp ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) + (𝐵𝐷𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5107 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 + caddc 11071 ≤ cle 11209 Basecbs 17179 distcds 17229 Metcmet 21250 MetSpcms 24206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-rp 12952 df-xneg 13072 df-xadd 13073 df-xmul 13074 df-topgen 17406 df-psmet 21256 df-xmet 21257 df-met 21258 df-bl 21259 df-mopn 21260 df-top 22781 df-topon 22798 df-topsp 22820 df-bases 22833 df-xms 24208 df-ms 24209 |
| This theorem is referenced by: nmmtri 24510 |
| Copyright terms: Public domain | W3C validator |