Proof of Theorem madjusmdetlem3
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | madjusmdet.n | . . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 2 |  | nnuz 12922 | . . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) | 
| 3 | 1, 2 | eleqtrdi 2850 | . . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) | 
| 4 |  | fzdif2 32793 | . . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) | 
| 5 | 3, 4 | syl 17 | . . . . . . . . 9
⊢ (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) | 
| 6 |  | difss 4135 | . . . . . . . . 9
⊢
((1...𝑁) ∖
{𝑁}) ⊆ (1...𝑁) | 
| 7 | 5, 6 | eqsstrrdi 4028 | . . . . . . . 8
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁)) | 
| 8 | 7 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) | 
| 9 |  | simprl 770 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...(𝑁 − 1))) | 
| 10 | 8, 9 | sseldd 3983 | . . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...𝑁)) | 
| 11 |  | simprr 772 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...(𝑁 − 1))) | 
| 12 | 8, 11 | sseldd 3983 | . . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...𝑁)) | 
| 13 |  | ovexd 7467 | . . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗)) ∈ V) | 
| 14 |  | madjusmdetlem3.w | . . . . . . 7
⊢ 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) | 
| 15 | 14 | ovmpt4g 7581 | . . . . . 6
⊢ ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁) ∧ (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗)) ∈ V) → (𝑖𝑊𝑗) = (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) | 
| 16 | 10, 12, 13, 15 | syl3anc 1372 | . . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖𝑊𝑗) = (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) | 
| 17 | 9, 11 | ovresd 7601 | . . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗) = (𝑖𝑊𝑗)) | 
| 18 |  | eqid 2736 | . . . . . . 7
⊢ (𝐼(subMat1‘𝑈)𝐽) = (𝐼(subMat1‘𝑈)𝐽) | 
| 19 | 1 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑁 ∈ ℕ) | 
| 20 |  | madjusmdet.i | . . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) | 
| 21 | 20 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ (1...𝑁)) | 
| 22 |  | madjusmdet.j | . . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) | 
| 23 | 22 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐽 ∈ (1...𝑁)) | 
| 24 |  | madjusmdetlem3.u | . . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ 𝐵) | 
| 25 |  | madjusmdet.a | . . . . . . . . . 10
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) | 
| 26 |  | eqid 2736 | . . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 27 |  | madjusmdet.b | . . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐴) | 
| 28 | 25, 26, 27 | matbas2i 22429 | . . . . . . . . 9
⊢ (𝑈 ∈ 𝐵 → 𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) | 
| 29 | 24, 28 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) | 
| 30 | 29 | adantr 480 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) | 
| 31 |  | fz1ssnn 13596 | . . . . . . . 8
⊢
(1...𝑁) ⊆
ℕ | 
| 32 | 31, 10 | sselid 3980 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℕ) | 
| 33 | 31, 12 | sselid 3980 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℕ) | 
| 34 |  | eqidd 2737 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))) | 
| 35 |  | eqidd 2737 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))) | 
| 36 | 18, 19, 19, 21, 23, 30, 32, 33, 34, 35 | smatlem 33797 | . . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)))) | 
| 37 |  | madjusmdet.d | . . . . . . . . 9
⊢ 𝐷 = ((1...𝑁) maDet 𝑅) | 
| 38 |  | madjusmdet.k | . . . . . . . . 9
⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) | 
| 39 |  | madjusmdet.t | . . . . . . . . 9
⊢  · =
(.r‘𝑅) | 
| 40 |  | madjusmdet.z | . . . . . . . . 9
⊢ 𝑍 = (ℤRHom‘𝑅) | 
| 41 |  | madjusmdet.e | . . . . . . . . 9
⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) | 
| 42 |  | madjusmdet.r | . . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ CRing) | 
| 43 |  | madjusmdet.m | . . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ 𝐵) | 
| 44 |  | madjusmdetlem2.p | . . . . . . . . 9
⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) | 
| 45 |  | madjusmdetlem2.s | . . . . . . . . 9
⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) | 
| 46 | 27, 25, 37, 38, 39, 40, 41, 1, 42, 20, 20, 43, 44, 45 | madjusmdetlem2 33828 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑁 − 1))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃 ∘ ◡𝑆)‘𝑖)) | 
| 47 | 9, 46 | syldan 591 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃 ∘ ◡𝑆)‘𝑖)) | 
| 48 |  | madjusmdetlem4.q | . . . . . . . . 9
⊢ 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) | 
| 49 |  | madjusmdetlem4.t | . . . . . . . . 9
⊢ 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) | 
| 50 | 27, 25, 37, 38, 39, 40, 41, 1, 42, 22, 22, 43, 48, 49 | madjusmdetlem2 33828 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...(𝑁 − 1))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄 ∘ ◡𝑇)‘𝑗)) | 
| 51 | 11, 50 | syldan 591 | . . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄 ∘ ◡𝑇)‘𝑗)) | 
| 52 | 47, 51 | oveq12d 7450 | . . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))) = (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) | 
| 53 | 36, 52 | eqtrd 2776 | . . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) | 
| 54 | 16, 17, 53 | 3eqtr4rd 2787 | . . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)) | 
| 55 | 54 | ralrimivva 3201 | . . 3
⊢ (𝜑 → ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)) | 
| 56 |  | eqid 2736 | . . . . 5
⊢
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) =
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) | 
| 57 | 25, 27, 56, 18, 1, 20, 22, 24 | smatcl 33802 | . . . 4
⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) | 
| 58 |  | fzfid 14015 | . . . . . . . 8
⊢ (𝜑 → (1...𝑁) ∈ Fin) | 
| 59 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(1...𝑁) = (1...𝑁) | 
| 60 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁)) | 
| 61 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁))) | 
| 62 | 59, 44, 60, 61 | fzto1st 33124 | . . . . . . . . . . . . 13
⊢ (𝐼 ∈ (1...𝑁) → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 63 | 20, 62 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 64 |  | eluzfz2 13573 | . . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘1) → 𝑁 ∈ (1...𝑁)) | 
| 65 | 3, 64 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) | 
| 66 | 59, 45, 60, 61 | fzto1st 33124 | . . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 67 | 65, 66 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 68 |  | eqid 2736 | . . . . . . . . . . . . . . 15
⊢
(invg‘(SymGrp‘(1...𝑁))) =
(invg‘(SymGrp‘(1...𝑁))) | 
| 69 | 60, 61, 68 | symginv 19421 | . . . . . . . . . . . . . 14
⊢ (𝑆 ∈
(Base‘(SymGrp‘(1...𝑁))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = ◡𝑆) | 
| 70 | 67, 69 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = ◡𝑆) | 
| 71 | 60 | symggrp 19419 | . . . . . . . . . . . . . . 15
⊢
((1...𝑁) ∈ Fin
→ (SymGrp‘(1...𝑁)) ∈ Grp) | 
| 72 | 58, 71 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → (SymGrp‘(1...𝑁)) ∈ Grp) | 
| 73 | 61, 68 | grpinvcl 19006 | . . . . . . . . . . . . . 14
⊢
(((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) | 
| 74 | 72, 67, 73 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) | 
| 75 | 70, 74 | eqeltrrd 2841 | . . . . . . . . . . . 12
⊢ (𝜑 → ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 76 |  | eqid 2736 | . . . . . . . . . . . . . 14
⊢
(+g‘(SymGrp‘(1...𝑁))) =
(+g‘(SymGrp‘(1...𝑁))) | 
| 77 | 60, 61, 76 | symgov 19402 | . . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))◡𝑆) = (𝑃 ∘ ◡𝑆)) | 
| 78 | 60, 61, 76 | symgcl 19403 | . . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))◡𝑆) ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 79 | 77, 78 | eqeltrrd 2841 | . . . . . . . . . . . 12
⊢ ((𝑃 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃 ∘ ◡𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) | 
| 80 | 63, 75, 79 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑃 ∘ ◡𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) | 
| 81 | 80 | 3ad2ant1 1133 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃 ∘ ◡𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) | 
| 82 |  | simp2 1137 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁)) | 
| 83 | 60, 61 | symgfv 19398 | . . . . . . . . . 10
⊢ (((𝑃 ∘ ◡𝑆) ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃 ∘ ◡𝑆)‘𝑖) ∈ (1...𝑁)) | 
| 84 | 81, 82, 83 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃 ∘ ◡𝑆)‘𝑖) ∈ (1...𝑁)) | 
| 85 | 59, 48, 60, 61 | fzto1st 33124 | . . . . . . . . . . . . 13
⊢ (𝐽 ∈ (1...𝑁) → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 86 | 22, 85 | syl 17 | . . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 87 | 59, 49, 60, 61 | fzto1st 33124 | . . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ (1...𝑁) → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 88 | 65, 87 | syl 17 | . . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 89 | 60, 61, 68 | symginv 19421 | . . . . . . . . . . . . . 14
⊢ (𝑇 ∈
(Base‘(SymGrp‘(1...𝑁))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = ◡𝑇) | 
| 90 | 88, 89 | syl 17 | . . . . . . . . . . . . 13
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = ◡𝑇) | 
| 91 | 61, 68 | grpinvcl 19006 | . . . . . . . . . . . . . 14
⊢
(((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) | 
| 92 | 72, 88, 91 | syl2anc 584 | . . . . . . . . . . . . 13
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) | 
| 93 | 90, 92 | eqeltrrd 2841 | . . . . . . . . . . . 12
⊢ (𝜑 → ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 94 | 60, 61, 76 | symgov 19402 | . . . . . . . . . . . . 13
⊢ ((𝑄 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))◡𝑇) = (𝑄 ∘ ◡𝑇)) | 
| 95 | 60, 61, 76 | symgcl 19403 | . . . . . . . . . . . . 13
⊢ ((𝑄 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))◡𝑇) ∈ (Base‘(SymGrp‘(1...𝑁)))) | 
| 96 | 94, 95 | eqeltrrd 2841 | . . . . . . . . . . . 12
⊢ ((𝑄 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄 ∘ ◡𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) | 
| 97 | 86, 93, 96 | syl2anc 584 | . . . . . . . . . . 11
⊢ (𝜑 → (𝑄 ∘ ◡𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) | 
| 98 | 97 | 3ad2ant1 1133 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄 ∘ ◡𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) | 
| 99 |  | simp3 1138 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁)) | 
| 100 | 60, 61 | symgfv 19398 | . . . . . . . . . 10
⊢ (((𝑄 ∘ ◡𝑇) ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄 ∘ ◡𝑇)‘𝑗) ∈ (1...𝑁)) | 
| 101 | 98, 99, 100 | syl2anc 584 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄 ∘ ◡𝑇)‘𝑗) ∈ (1...𝑁)) | 
| 102 | 24 | 3ad2ant1 1133 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑈 ∈ 𝐵) | 
| 103 | 25, 26, 27, 84, 101, 102 | matecld 22433 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗)) ∈ (Base‘𝑅)) | 
| 104 | 25, 26, 27, 58, 42, 103 | matbas2d 22430 | . . . . . . 7
⊢ (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) ∈ 𝐵) | 
| 105 | 14, 104 | eqeltrid 2844 | . . . . . 6
⊢ (𝜑 → 𝑊 ∈ 𝐵) | 
| 106 | 25, 27 | submatres 33806 | . . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑊 ∈ 𝐵) → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) | 
| 107 | 1, 105, 106 | syl2anc 584 | . . . . 5
⊢ (𝜑 → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) | 
| 108 |  | eqid 2736 | . . . . . 6
⊢ (𝑁(subMat1‘𝑊)𝑁) = (𝑁(subMat1‘𝑊)𝑁) | 
| 109 | 25, 27, 56, 108, 1, 65, 65, 105 | smatcl 33802 | . . . . 5
⊢ (𝜑 → (𝑁(subMat1‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) | 
| 110 | 107, 109 | eqeltrrd 2841 | . . . 4
⊢ (𝜑 → (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈
(Base‘((1...(𝑁
− 1)) Mat 𝑅))) | 
| 111 |  | eqid 2736 | . . . . 5
⊢
((1...(𝑁 − 1))
Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅) | 
| 112 | 111, 56 | eqmat 22431 | . . . 4
⊢ (((𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) ∧ (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈
(Base‘((1...(𝑁
− 1)) Mat 𝑅))) →
((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))) | 
| 113 | 57, 110, 112 | syl2anc 584 | . . 3
⊢ (𝜑 → ((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))) | 
| 114 | 55, 113 | mpbird 257 | . 2
⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) | 
| 115 | 114, 107 | eqtr4d 2779 | 1
⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁)) |