Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem3 Structured version   Visualization version   GIF version

Theorem madjusmdetlem3 33842
Description: Lemma for madjusmdet 33844. (Contributed by Thierry Arnoux, 27-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem2.p 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
madjusmdetlem2.s 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
madjusmdetlem4.q 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
madjusmdetlem4.t 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
madjusmdetlem3.w 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
madjusmdetlem3.u (𝜑𝑈𝐵)
Assertion
Ref Expression
madjusmdetlem3 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗   𝑇,𝑖,𝑗   𝑈,𝑖,𝑗   𝑖,𝑊,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem madjusmdetlem3
StepHypRef Expression
1 madjusmdet.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
2 nnuz 12775 . . . . . . . . . . 11 ℕ = (ℤ‘1)
31, 2eleqtrdi 2841 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘1))
4 fzdif2 32773 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
53, 4syl 17 . . . . . . . . 9 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
6 difss 4083 . . . . . . . . 9 ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁)
75, 6eqsstrrdi 3975 . . . . . . . 8 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
87adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
9 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...(𝑁 − 1)))
108, 9sseldd 3930 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...𝑁))
11 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...(𝑁 − 1)))
128, 11sseldd 3930 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...𝑁))
13 ovexd 7381 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ V)
14 madjusmdetlem3.w . . . . . . 7 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
1514ovmpt4g 7493 . . . . . 6 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁) ∧ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ V) → (𝑖𝑊𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
1610, 12, 13, 15syl3anc 1373 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖𝑊𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
179, 11ovresd 7513 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗) = (𝑖𝑊𝑗))
18 eqid 2731 . . . . . . 7 (𝐼(subMat1‘𝑈)𝐽) = (𝐼(subMat1‘𝑈)𝐽)
191adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑁 ∈ ℕ)
20 madjusmdet.i . . . . . . . 8 (𝜑𝐼 ∈ (1...𝑁))
2120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ (1...𝑁))
22 madjusmdet.j . . . . . . . 8 (𝜑𝐽 ∈ (1...𝑁))
2322adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐽 ∈ (1...𝑁))
24 madjusmdetlem3.u . . . . . . . . 9 (𝜑𝑈𝐵)
25 madjusmdet.a . . . . . . . . . 10 𝐴 = ((1...𝑁) Mat 𝑅)
26 eqid 2731 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
27 madjusmdet.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
2825, 26, 27matbas2i 22337 . . . . . . . . 9 (𝑈𝐵𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
2924, 28syl 17 . . . . . . . 8 (𝜑𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
3029adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
31 fz1ssnn 13455 . . . . . . . 8 (1...𝑁) ⊆ ℕ
3231, 10sselid 3927 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℕ)
3331, 12sselid 3927 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℕ)
34 eqidd 2732 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)))
35 eqidd 2732 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)))
3618, 19, 19, 21, 23, 30, 32, 33, 34, 35smatlem 33810 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))))
37 madjusmdet.d . . . . . . . . 9 𝐷 = ((1...𝑁) maDet 𝑅)
38 madjusmdet.k . . . . . . . . 9 𝐾 = ((1...𝑁) maAdju 𝑅)
39 madjusmdet.t . . . . . . . . 9 · = (.r𝑅)
40 madjusmdet.z . . . . . . . . 9 𝑍 = (ℤRHom‘𝑅)
41 madjusmdet.e . . . . . . . . 9 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
42 madjusmdet.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
43 madjusmdet.m . . . . . . . . 9 (𝜑𝑀𝐵)
44 madjusmdetlem2.p . . . . . . . . 9 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
45 madjusmdetlem2.s . . . . . . . . 9 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
4627, 25, 37, 38, 39, 40, 41, 1, 42, 20, 20, 43, 44, 45madjusmdetlem2 33841 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑁 − 1))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃𝑆)‘𝑖))
479, 46syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃𝑆)‘𝑖))
48 madjusmdetlem4.q . . . . . . . . 9 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
49 madjusmdetlem4.t . . . . . . . . 9 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
5027, 25, 37, 38, 39, 40, 41, 1, 42, 22, 22, 43, 48, 49madjusmdetlem2 33841 . . . . . . . 8 ((𝜑𝑗 ∈ (1...(𝑁 − 1))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄𝑇)‘𝑗))
5111, 50syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄𝑇)‘𝑗))
5247, 51oveq12d 7364 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
5336, 52eqtrd 2766 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
5416, 17, 533eqtr4rd 2777 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))
5554ralrimivva 3175 . . 3 (𝜑 → ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))
56 eqid 2731 . . . . 5 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
5725, 27, 56, 18, 1, 20, 22, 24smatcl 33815 . . . 4 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
58 fzfid 13880 . . . . . . . 8 (𝜑 → (1...𝑁) ∈ Fin)
59 eqid 2731 . . . . . . . . . . . . . 14 (1...𝑁) = (1...𝑁)
60 eqid 2731 . . . . . . . . . . . . . 14 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
61 eqid 2731 . . . . . . . . . . . . . 14 (Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁)))
6259, 44, 60, 61fzto1st 33072 . . . . . . . . . . . . 13 (𝐼 ∈ (1...𝑁) → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
6320, 62syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
64 eluzfz2 13432 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
653, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (1...𝑁))
6659, 45, 60, 61fzto1st 33072 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
6765, 66syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
68 eqid 2731 . . . . . . . . . . . . . . 15 (invg‘(SymGrp‘(1...𝑁))) = (invg‘(SymGrp‘(1...𝑁)))
6960, 61, 68symginv 19314 . . . . . . . . . . . . . 14 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
7067, 69syl 17 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
7160symggrp 19312 . . . . . . . . . . . . . . 15 ((1...𝑁) ∈ Fin → (SymGrp‘(1...𝑁)) ∈ Grp)
7258, 71syl 17 . . . . . . . . . . . . . 14 (𝜑 → (SymGrp‘(1...𝑁)) ∈ Grp)
7361, 68grpinvcl 18900 . . . . . . . . . . . . . 14 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7472, 67, 73syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7570, 74eqeltrrd 2832 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
76 eqid 2731 . . . . . . . . . . . . . 14 (+g‘(SymGrp‘(1...𝑁))) = (+g‘(SymGrp‘(1...𝑁)))
7760, 61, 76symgov 19296 . . . . . . . . . . . . 13 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) = (𝑃𝑆))
7860, 61, 76symgcl 19297 . . . . . . . . . . . . 13 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7977, 78eqeltrrd 2832 . . . . . . . . . . . 12 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
8063, 75, 79syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
81803ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
82 simp2 1137 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
8360, 61symgfv 19292 . . . . . . . . . 10 (((𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃𝑆)‘𝑖) ∈ (1...𝑁))
8481, 82, 83syl2anc 584 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑆)‘𝑖) ∈ (1...𝑁))
8559, 48, 60, 61fzto1st 33072 . . . . . . . . . . . . 13 (𝐽 ∈ (1...𝑁) → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
8622, 85syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
8759, 49, 60, 61fzto1st 33072 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1...𝑁) → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
8865, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
8960, 61, 68symginv 19314 . . . . . . . . . . . . . 14 (𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
9088, 89syl 17 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
9161, 68grpinvcl 18900 . . . . . . . . . . . . . 14 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9272, 88, 91syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9390, 92eqeltrrd 2832 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
9460, 61, 76symgov 19296 . . . . . . . . . . . . 13 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) = (𝑄𝑇))
9560, 61, 76symgcl 19297 . . . . . . . . . . . . 13 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9694, 95eqeltrrd 2832 . . . . . . . . . . . 12 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9786, 93, 96syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
98973ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
99 simp3 1138 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
10060, 61symgfv 19292 . . . . . . . . . 10 (((𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄𝑇)‘𝑗) ∈ (1...𝑁))
10198, 99, 100syl2anc 584 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄𝑇)‘𝑗) ∈ (1...𝑁))
102243ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑈𝐵)
10325, 26, 27, 84, 101, 102matecld 22341 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ (Base‘𝑅))
10425, 26, 27, 58, 42, 103matbas2d 22338 . . . . . . 7 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗))) ∈ 𝐵)
10514, 104eqeltrid 2835 . . . . . 6 (𝜑𝑊𝐵)
10625, 27submatres 33819 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑊𝐵) → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
1071, 105, 106syl2anc 584 . . . . 5 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
108 eqid 2731 . . . . . 6 (𝑁(subMat1‘𝑊)𝑁) = (𝑁(subMat1‘𝑊)𝑁)
10925, 27, 56, 108, 1, 65, 65, 105smatcl 33815 . . . . 5 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
110107, 109eqeltrrd 2832 . . . 4 (𝜑 → (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
111 eqid 2731 . . . . 5 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
112111, 56eqmat 22339 . . . 4 (((𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) ∧ (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → ((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)))
11357, 110, 112syl2anc 584 . . 3 (𝜑 → ((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)))
11455, 113mpbird 257 . 2 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
115114, 107eqtr4d 2769 1 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  cdif 3894  wss 3897  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  ccnv 5613  cres 5616  ccom 5618  cfv 6481  (class class class)co 7346  cmpo 7348  m cmap 8750  Fincfn 8869  1c1 11007   + caddc 11009   < clt 11146  cle 11147  cmin 11344  cn 12125  cuz 12732  ...cfz 13407  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  Grpcgrp 18846  invgcminusg 18847  SymGrpcsymg 19281  CRingccrg 20152  ℤRHomczrh 21436   Mat cmat 22322   maDet cmdat 22499   maAdju cmadu 22547  subMat1csmat 33806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-sup 9326  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-prds 17351  df-pws 17353  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-efmnd 18777  df-grp 18849  df-minusg 18850  df-symg 19282  df-pmtr 19354  df-sra 21107  df-rgmod 21108  df-dsmm 21669  df-frlm 21684  df-mat 22323  df-subma 22492  df-smat 33807
This theorem is referenced by:  madjusmdetlem4  33843
  Copyright terms: Public domain W3C validator