Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem3 Structured version   Visualization version   GIF version

Theorem madjusmdetlem3 33829
Description: Lemma for madjusmdet 33831. (Contributed by Thierry Arnoux, 27-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem2.p 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
madjusmdetlem2.s 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
madjusmdetlem4.q 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
madjusmdetlem4.t 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
madjusmdetlem3.w 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
madjusmdetlem3.u (𝜑𝑈𝐵)
Assertion
Ref Expression
madjusmdetlem3 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗   𝑇,𝑖,𝑗   𝑈,𝑖,𝑗   𝑖,𝑊,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem madjusmdetlem3
StepHypRef Expression
1 madjusmdet.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
2 nnuz 12922 . . . . . . . . . . 11 ℕ = (ℤ‘1)
31, 2eleqtrdi 2850 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘1))
4 fzdif2 32793 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
53, 4syl 17 . . . . . . . . 9 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
6 difss 4135 . . . . . . . . 9 ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁)
75, 6eqsstrrdi 4028 . . . . . . . 8 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
87adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
9 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...(𝑁 − 1)))
108, 9sseldd 3983 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...𝑁))
11 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...(𝑁 − 1)))
128, 11sseldd 3983 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...𝑁))
13 ovexd 7467 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ V)
14 madjusmdetlem3.w . . . . . . 7 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
1514ovmpt4g 7581 . . . . . 6 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁) ∧ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ V) → (𝑖𝑊𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
1610, 12, 13, 15syl3anc 1372 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖𝑊𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
179, 11ovresd 7601 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗) = (𝑖𝑊𝑗))
18 eqid 2736 . . . . . . 7 (𝐼(subMat1‘𝑈)𝐽) = (𝐼(subMat1‘𝑈)𝐽)
191adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑁 ∈ ℕ)
20 madjusmdet.i . . . . . . . 8 (𝜑𝐼 ∈ (1...𝑁))
2120adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ (1...𝑁))
22 madjusmdet.j . . . . . . . 8 (𝜑𝐽 ∈ (1...𝑁))
2322adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐽 ∈ (1...𝑁))
24 madjusmdetlem3.u . . . . . . . . 9 (𝜑𝑈𝐵)
25 madjusmdet.a . . . . . . . . . 10 𝐴 = ((1...𝑁) Mat 𝑅)
26 eqid 2736 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
27 madjusmdet.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
2825, 26, 27matbas2i 22429 . . . . . . . . 9 (𝑈𝐵𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
2924, 28syl 17 . . . . . . . 8 (𝜑𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
3029adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
31 fz1ssnn 13596 . . . . . . . 8 (1...𝑁) ⊆ ℕ
3231, 10sselid 3980 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℕ)
3331, 12sselid 3980 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℕ)
34 eqidd 2737 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)))
35 eqidd 2737 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)))
3618, 19, 19, 21, 23, 30, 32, 33, 34, 35smatlem 33797 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))))
37 madjusmdet.d . . . . . . . . 9 𝐷 = ((1...𝑁) maDet 𝑅)
38 madjusmdet.k . . . . . . . . 9 𝐾 = ((1...𝑁) maAdju 𝑅)
39 madjusmdet.t . . . . . . . . 9 · = (.r𝑅)
40 madjusmdet.z . . . . . . . . 9 𝑍 = (ℤRHom‘𝑅)
41 madjusmdet.e . . . . . . . . 9 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
42 madjusmdet.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
43 madjusmdet.m . . . . . . . . 9 (𝜑𝑀𝐵)
44 madjusmdetlem2.p . . . . . . . . 9 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
45 madjusmdetlem2.s . . . . . . . . 9 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
4627, 25, 37, 38, 39, 40, 41, 1, 42, 20, 20, 43, 44, 45madjusmdetlem2 33828 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑁 − 1))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃𝑆)‘𝑖))
479, 46syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃𝑆)‘𝑖))
48 madjusmdetlem4.q . . . . . . . . 9 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
49 madjusmdetlem4.t . . . . . . . . 9 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
5027, 25, 37, 38, 39, 40, 41, 1, 42, 22, 22, 43, 48, 49madjusmdetlem2 33828 . . . . . . . 8 ((𝜑𝑗 ∈ (1...(𝑁 − 1))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄𝑇)‘𝑗))
5111, 50syldan 591 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄𝑇)‘𝑗))
5247, 51oveq12d 7450 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
5336, 52eqtrd 2776 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
5416, 17, 533eqtr4rd 2787 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))
5554ralrimivva 3201 . . 3 (𝜑 → ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))
56 eqid 2736 . . . . 5 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
5725, 27, 56, 18, 1, 20, 22, 24smatcl 33802 . . . 4 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
58 fzfid 14015 . . . . . . . 8 (𝜑 → (1...𝑁) ∈ Fin)
59 eqid 2736 . . . . . . . . . . . . . 14 (1...𝑁) = (1...𝑁)
60 eqid 2736 . . . . . . . . . . . . . 14 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
61 eqid 2736 . . . . . . . . . . . . . 14 (Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁)))
6259, 44, 60, 61fzto1st 33124 . . . . . . . . . . . . 13 (𝐼 ∈ (1...𝑁) → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
6320, 62syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
64 eluzfz2 13573 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
653, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (1...𝑁))
6659, 45, 60, 61fzto1st 33124 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
6765, 66syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
68 eqid 2736 . . . . . . . . . . . . . . 15 (invg‘(SymGrp‘(1...𝑁))) = (invg‘(SymGrp‘(1...𝑁)))
6960, 61, 68symginv 19421 . . . . . . . . . . . . . 14 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
7067, 69syl 17 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
7160symggrp 19419 . . . . . . . . . . . . . . 15 ((1...𝑁) ∈ Fin → (SymGrp‘(1...𝑁)) ∈ Grp)
7258, 71syl 17 . . . . . . . . . . . . . 14 (𝜑 → (SymGrp‘(1...𝑁)) ∈ Grp)
7361, 68grpinvcl 19006 . . . . . . . . . . . . . 14 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7472, 67, 73syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7570, 74eqeltrrd 2841 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
76 eqid 2736 . . . . . . . . . . . . . 14 (+g‘(SymGrp‘(1...𝑁))) = (+g‘(SymGrp‘(1...𝑁)))
7760, 61, 76symgov 19402 . . . . . . . . . . . . 13 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) = (𝑃𝑆))
7860, 61, 76symgcl 19403 . . . . . . . . . . . . 13 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7977, 78eqeltrrd 2841 . . . . . . . . . . . 12 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
8063, 75, 79syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
81803ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
82 simp2 1137 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
8360, 61symgfv 19398 . . . . . . . . . 10 (((𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃𝑆)‘𝑖) ∈ (1...𝑁))
8481, 82, 83syl2anc 584 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑆)‘𝑖) ∈ (1...𝑁))
8559, 48, 60, 61fzto1st 33124 . . . . . . . . . . . . 13 (𝐽 ∈ (1...𝑁) → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
8622, 85syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
8759, 49, 60, 61fzto1st 33124 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1...𝑁) → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
8865, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
8960, 61, 68symginv 19421 . . . . . . . . . . . . . 14 (𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
9088, 89syl 17 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
9161, 68grpinvcl 19006 . . . . . . . . . . . . . 14 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9272, 88, 91syl2anc 584 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9390, 92eqeltrrd 2841 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
9460, 61, 76symgov 19402 . . . . . . . . . . . . 13 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) = (𝑄𝑇))
9560, 61, 76symgcl 19403 . . . . . . . . . . . . 13 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9694, 95eqeltrrd 2841 . . . . . . . . . . . 12 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9786, 93, 96syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
98973ad2ant1 1133 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
99 simp3 1138 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
10060, 61symgfv 19398 . . . . . . . . . 10 (((𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄𝑇)‘𝑗) ∈ (1...𝑁))
10198, 99, 100syl2anc 584 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄𝑇)‘𝑗) ∈ (1...𝑁))
102243ad2ant1 1133 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑈𝐵)
10325, 26, 27, 84, 101, 102matecld 22433 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ (Base‘𝑅))
10425, 26, 27, 58, 42, 103matbas2d 22430 . . . . . . 7 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗))) ∈ 𝐵)
10514, 104eqeltrid 2844 . . . . . 6 (𝜑𝑊𝐵)
10625, 27submatres 33806 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑊𝐵) → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
1071, 105, 106syl2anc 584 . . . . 5 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
108 eqid 2736 . . . . . 6 (𝑁(subMat1‘𝑊)𝑁) = (𝑁(subMat1‘𝑊)𝑁)
10925, 27, 56, 108, 1, 65, 65, 105smatcl 33802 . . . . 5 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
110107, 109eqeltrrd 2841 . . . 4 (𝜑 → (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
111 eqid 2736 . . . . 5 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
112111, 56eqmat 22431 . . . 4 (((𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) ∧ (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → ((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)))
11357, 110, 112syl2anc 584 . . 3 (𝜑 → ((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)))
11455, 113mpbird 257 . 2 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
115114, 107eqtr4d 2779 1 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  Vcvv 3479  cdif 3947  wss 3950  ifcif 4524  {csn 4625   class class class wbr 5142  cmpt 5224   × cxp 5682  ccnv 5683  cres 5686  ccom 5688  cfv 6560  (class class class)co 7432  cmpo 7434  m cmap 8867  Fincfn 8986  1c1 11157   + caddc 11159   < clt 11296  cle 11297  cmin 11493  cn 12267  cuz 12879  ...cfz 13548  Basecbs 17248  +gcplusg 17298  .rcmulr 17299  Grpcgrp 18952  invgcminusg 18953  SymGrpcsymg 19387  CRingccrg 20232  ℤRHomczrh 21511   Mat cmat 22412   maDet cmdat 22591   maAdju cmadu 22639  subMat1csmat 33793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-sup 9483  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-3 12331  df-4 12332  df-5 12333  df-6 12334  df-7 12335  df-8 12336  df-9 12337  df-n0 12529  df-z 12616  df-dec 12736  df-uz 12880  df-rp 13036  df-fz 13549  df-fzo 13696  df-struct 17185  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17487  df-prds 17493  df-pws 17495  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-submnd 18798  df-efmnd 18883  df-grp 18955  df-minusg 18956  df-symg 19388  df-pmtr 19461  df-sra 21173  df-rgmod 21174  df-dsmm 21753  df-frlm 21768  df-mat 22413  df-subma 22584  df-smat 33794
This theorem is referenced by:  madjusmdetlem4  33830
  Copyright terms: Public domain W3C validator