Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  madjusmdetlem3 Structured version   Visualization version   GIF version

Theorem madjusmdetlem3 31182
Description: Lemma for madjusmdet 31184. (Contributed by Thierry Arnoux, 27-Aug-2020.)
Hypotheses
Ref Expression
madjusmdet.b 𝐵 = (Base‘𝐴)
madjusmdet.a 𝐴 = ((1...𝑁) Mat 𝑅)
madjusmdet.d 𝐷 = ((1...𝑁) maDet 𝑅)
madjusmdet.k 𝐾 = ((1...𝑁) maAdju 𝑅)
madjusmdet.t · = (.r𝑅)
madjusmdet.z 𝑍 = (ℤRHom‘𝑅)
madjusmdet.e 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
madjusmdet.n (𝜑𝑁 ∈ ℕ)
madjusmdet.r (𝜑𝑅 ∈ CRing)
madjusmdet.i (𝜑𝐼 ∈ (1...𝑁))
madjusmdet.j (𝜑𝐽 ∈ (1...𝑁))
madjusmdet.m (𝜑𝑀𝐵)
madjusmdetlem2.p 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
madjusmdetlem2.s 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
madjusmdetlem4.q 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
madjusmdetlem4.t 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
madjusmdetlem3.w 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
madjusmdetlem3.u (𝜑𝑈𝐵)
Assertion
Ref Expression
madjusmdetlem3 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Distinct variable groups:   𝐵,𝑖,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑀,𝑗   𝑖,𝑁,𝑗   𝑃,𝑖,𝑗   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝜑,𝑖,𝑗   𝑆,𝑖,𝑗   𝑇,𝑖,𝑗   𝑈,𝑖,𝑗   𝑖,𝑊,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐷(𝑖,𝑗)   · (𝑖,𝑗)   𝐸(𝑖,𝑗)   𝐾(𝑖,𝑗)   𝑍(𝑖,𝑗)

Proof of Theorem madjusmdetlem3
StepHypRef Expression
1 madjusmdet.n . . . . . . . . . . 11 (𝜑𝑁 ∈ ℕ)
2 nnuz 12269 . . . . . . . . . . 11 ℕ = (ℤ‘1)
31, 2eleqtrdi 2900 . . . . . . . . . 10 (𝜑𝑁 ∈ (ℤ‘1))
4 fzdif2 30540 . . . . . . . . . 10 (𝑁 ∈ (ℤ‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
53, 4syl 17 . . . . . . . . 9 (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1)))
6 difss 4059 . . . . . . . . 9 ((1...𝑁) ∖ {𝑁}) ⊆ (1...𝑁)
75, 6eqsstrrdi 3970 . . . . . . . 8 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
87adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...(𝑁 − 1)) ⊆ (1...𝑁))
9 simprl 770 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...(𝑁 − 1)))
108, 9sseldd 3916 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...𝑁))
11 simprr 772 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...(𝑁 − 1)))
128, 11sseldd 3916 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...𝑁))
13 ovexd 7170 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ V)
14 madjusmdetlem3.w . . . . . . 7 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
1514ovmpt4g 7276 . . . . . 6 ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁) ∧ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ V) → (𝑖𝑊𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
1610, 12, 13, 15syl3anc 1368 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖𝑊𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
179, 11ovresd 7295 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗) = (𝑖𝑊𝑗))
18 eqid 2798 . . . . . . 7 (𝐼(subMat1‘𝑈)𝐽) = (𝐼(subMat1‘𝑈)𝐽)
191adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑁 ∈ ℕ)
20 madjusmdet.i . . . . . . . 8 (𝜑𝐼 ∈ (1...𝑁))
2120adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ (1...𝑁))
22 madjusmdet.j . . . . . . . 8 (𝜑𝐽 ∈ (1...𝑁))
2322adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐽 ∈ (1...𝑁))
24 madjusmdetlem3.u . . . . . . . . 9 (𝜑𝑈𝐵)
25 madjusmdet.a . . . . . . . . . 10 𝐴 = ((1...𝑁) Mat 𝑅)
26 eqid 2798 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝑅)
27 madjusmdet.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
2825, 26, 27matbas2i 21027 . . . . . . . . 9 (𝑈𝐵𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
2924, 28syl 17 . . . . . . . 8 (𝜑𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
3029adantr 484 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁))))
31 fz1ssnn 12933 . . . . . . . 8 (1...𝑁) ⊆ ℕ
3231, 10sseldi 3913 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℕ)
3331, 12sseldi 3913 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℕ)
34 eqidd 2799 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)))
35 eqidd 2799 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)))
3618, 19, 19, 21, 23, 30, 32, 33, 34, 35smatlem 31150 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))))
37 madjusmdet.d . . . . . . . . 9 𝐷 = ((1...𝑁) maDet 𝑅)
38 madjusmdet.k . . . . . . . . 9 𝐾 = ((1...𝑁) maAdju 𝑅)
39 madjusmdet.t . . . . . . . . 9 · = (.r𝑅)
40 madjusmdet.z . . . . . . . . 9 𝑍 = (ℤRHom‘𝑅)
41 madjusmdet.e . . . . . . . . 9 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅)
42 madjusmdet.r . . . . . . . . 9 (𝜑𝑅 ∈ CRing)
43 madjusmdet.m . . . . . . . . 9 (𝜑𝑀𝐵)
44 madjusmdetlem2.p . . . . . . . . 9 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖𝐼, (𝑖 − 1), 𝑖)))
45 madjusmdetlem2.s . . . . . . . . 9 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖𝑁, (𝑖 − 1), 𝑖)))
4627, 25, 37, 38, 39, 40, 41, 1, 42, 20, 20, 43, 44, 45madjusmdetlem2 31181 . . . . . . . 8 ((𝜑𝑖 ∈ (1...(𝑁 − 1))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃𝑆)‘𝑖))
479, 46syldan 594 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃𝑆)‘𝑖))
48 madjusmdetlem4.q . . . . . . . . 9 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗𝐽, (𝑗 − 1), 𝑗)))
49 madjusmdetlem4.t . . . . . . . . 9 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗𝑁, (𝑗 − 1), 𝑗)))
5027, 25, 37, 38, 39, 40, 41, 1, 42, 22, 22, 43, 48, 49madjusmdetlem2 31181 . . . . . . . 8 ((𝜑𝑗 ∈ (1...(𝑁 − 1))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄𝑇)‘𝑗))
5111, 50syldan 594 . . . . . . 7 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄𝑇)‘𝑗))
5247, 51oveq12d 7153 . . . . . 6 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
5336, 52eqtrd 2833 . . . . 5 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)))
5416, 17, 533eqtr4rd 2844 . . . 4 ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))
5554ralrimivva 3156 . . 3 (𝜑 → ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))
56 eqid 2798 . . . . 5 (Base‘((1...(𝑁 − 1)) Mat 𝑅)) = (Base‘((1...(𝑁 − 1)) Mat 𝑅))
5725, 27, 56, 18, 1, 20, 22, 24smatcl 31155 . . . 4 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
58 fzfid 13336 . . . . . . . 8 (𝜑 → (1...𝑁) ∈ Fin)
59 eqid 2798 . . . . . . . . . . . . . 14 (1...𝑁) = (1...𝑁)
60 eqid 2798 . . . . . . . . . . . . . 14 (SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁))
61 eqid 2798 . . . . . . . . . . . . . 14 (Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁)))
6259, 44, 60, 61fzto1st 30795 . . . . . . . . . . . . 13 (𝐼 ∈ (1...𝑁) → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
6320, 62syl 17 . . . . . . . . . . . 12 (𝜑𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))))
64 eluzfz2 12910 . . . . . . . . . . . . . . . 16 (𝑁 ∈ (ℤ‘1) → 𝑁 ∈ (1...𝑁))
653, 64syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑁 ∈ (1...𝑁))
6659, 45, 60, 61fzto1st 30795 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
6765, 66syl 17 . . . . . . . . . . . . . 14 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
68 eqid 2798 . . . . . . . . . . . . . . 15 (invg‘(SymGrp‘(1...𝑁))) = (invg‘(SymGrp‘(1...𝑁)))
6960, 61, 68symginv 18522 . . . . . . . . . . . . . 14 (𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
7067, 69syl 17 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = 𝑆)
7160symggrp 18520 . . . . . . . . . . . . . . 15 ((1...𝑁) ∈ Fin → (SymGrp‘(1...𝑁)) ∈ Grp)
7258, 71syl 17 . . . . . . . . . . . . . 14 (𝜑 → (SymGrp‘(1...𝑁)) ∈ Grp)
7361, 68grpinvcl 18143 . . . . . . . . . . . . . 14 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7472, 67, 73syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7570, 74eqeltrrd 2891 . . . . . . . . . . . 12 (𝜑𝑆 ∈ (Base‘(SymGrp‘(1...𝑁))))
76 eqid 2798 . . . . . . . . . . . . . 14 (+g‘(SymGrp‘(1...𝑁))) = (+g‘(SymGrp‘(1...𝑁)))
7760, 61, 76symgov 18504 . . . . . . . . . . . . 13 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) = (𝑃𝑆))
7860, 61, 76symgcl 18505 . . . . . . . . . . . . 13 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
7977, 78eqeltrrd 2891 . . . . . . . . . . . 12 ((𝑃 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
8063, 75, 79syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
81803ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))))
82 simp2 1134 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁))
8360, 61symgfv 18500 . . . . . . . . . 10 (((𝑃𝑆) ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃𝑆)‘𝑖) ∈ (1...𝑁))
8481, 82, 83syl2anc 587 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃𝑆)‘𝑖) ∈ (1...𝑁))
8559, 48, 60, 61fzto1st 30795 . . . . . . . . . . . . 13 (𝐽 ∈ (1...𝑁) → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
8622, 85syl 17 . . . . . . . . . . . 12 (𝜑𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))))
8759, 49, 60, 61fzto1st 30795 . . . . . . . . . . . . . . 15 (𝑁 ∈ (1...𝑁) → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
8865, 87syl 17 . . . . . . . . . . . . . 14 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
8960, 61, 68symginv 18522 . . . . . . . . . . . . . 14 (𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
9088, 89syl 17 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = 𝑇)
9161, 68grpinvcl 18143 . . . . . . . . . . . . . 14 (((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9272, 88, 91syl2anc 587 . . . . . . . . . . . . 13 (𝜑 → ((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9390, 92eqeltrrd 2891 . . . . . . . . . . . 12 (𝜑𝑇 ∈ (Base‘(SymGrp‘(1...𝑁))))
9460, 61, 76symgov 18504 . . . . . . . . . . . . 13 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) = (𝑄𝑇))
9560, 61, 76symgcl 18505 . . . . . . . . . . . . 13 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9694, 95eqeltrrd 2891 . . . . . . . . . . . 12 ((𝑄 ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
9786, 93, 96syl2anc 587 . . . . . . . . . . 11 (𝜑 → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
98973ad2ant1 1130 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))))
99 simp3 1135 . . . . . . . . . 10 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁))
10060, 61symgfv 18500 . . . . . . . . . 10 (((𝑄𝑇) ∈ (Base‘(SymGrp‘(1...𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄𝑇)‘𝑗) ∈ (1...𝑁))
10198, 99, 100syl2anc 587 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄𝑇)‘𝑗) ∈ (1...𝑁))
102243ad2ant1 1130 . . . . . . . . 9 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑈𝐵)
10325, 26, 27, 84, 101, 102matecld 21031 . . . . . . . 8 ((𝜑𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗)) ∈ (Base‘𝑅))
10425, 26, 27, 58, 42, 103matbas2d 21028 . . . . . . 7 (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃𝑆)‘𝑖)𝑈((𝑄𝑇)‘𝑗))) ∈ 𝐵)
10514, 104eqeltrid 2894 . . . . . 6 (𝜑𝑊𝐵)
10625, 27submatres 31159 . . . . . 6 ((𝑁 ∈ ℕ ∧ 𝑊𝐵) → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
1071, 105, 106syl2anc 587 . . . . 5 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
108 eqid 2798 . . . . . 6 (𝑁(subMat1‘𝑊)𝑁) = (𝑁(subMat1‘𝑊)𝑁)
10925, 27, 56, 108, 1, 65, 65, 105smatcl 31155 . . . . 5 (𝜑 → (𝑁(subMat1‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
110107, 109eqeltrrd 2891 . . . 4 (𝜑 → (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)))
111 eqid 2798 . . . . 5 ((1...(𝑁 − 1)) Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅)
112111, 56eqmat 21029 . . . 4 (((𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) ∧ (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) → ((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)))
11357, 110, 112syl2anc 587 . . 3 (𝜑 → ((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)))
11455, 113mpbird 260 . 2 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))))
115114, 107eqtr4d 2836 1 (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  cdif 3878  wss 3881  ifcif 4425  {csn 4525   class class class wbr 5030  cmpt 5110   × cxp 5517  ccnv 5518  cres 5521  ccom 5523  cfv 6324  (class class class)co 7135  cmpo 7137  m cmap 8389  Fincfn 8492  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cn 11625  cuz 12231  ...cfz 12885  Basecbs 16475  +gcplusg 16557  .rcmulr 16558  Grpcgrp 18095  invgcminusg 18096  SymGrpcsymg 18487  CRingccrg 19291  ℤRHomczrh 20193   Mat cmat 21012   maDet cmdat 21189   maAdju cmadu 21237  subMat1csmat 31146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-rp 12378  df-fz 12886  df-fzo 13029  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-submnd 17949  df-efmnd 18026  df-grp 18098  df-minusg 18099  df-symg 18488  df-pmtr 18562  df-sra 19937  df-rgmod 19938  df-dsmm 20421  df-frlm 20436  df-mat 21013  df-subma 21182  df-smat 31147
This theorem is referenced by:  madjusmdetlem4  31183
  Copyright terms: Public domain W3C validator