Proof of Theorem madjusmdetlem3
Step | Hyp | Ref
| Expression |
1 | | madjusmdet.n |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑁 ∈ ℕ) |
2 | | nnuz 12550 |
. . . . . . . . . . 11
⊢ ℕ =
(ℤ≥‘1) |
3 | 1, 2 | eleqtrdi 2849 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑁 ∈
(ℤ≥‘1)) |
4 | | fzdif2 31014 |
. . . . . . . . . 10
⊢ (𝑁 ∈
(ℤ≥‘1) → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
5 | 3, 4 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → ((1...𝑁) ∖ {𝑁}) = (1...(𝑁 − 1))) |
6 | | difss 4062 |
. . . . . . . . 9
⊢
((1...𝑁) ∖
{𝑁}) ⊆ (1...𝑁) |
7 | 5, 6 | eqsstrrdi 3972 |
. . . . . . . 8
⊢ (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
8 | 7 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (1...(𝑁 − 1)) ⊆ (1...𝑁)) |
9 | | simprl 767 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...(𝑁 − 1))) |
10 | 8, 9 | sseldd 3918 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ (1...𝑁)) |
11 | | simprr 769 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...(𝑁 − 1))) |
12 | 8, 11 | sseldd 3918 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ (1...𝑁)) |
13 | | ovexd 7290 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗)) ∈ V) |
14 | | madjusmdetlem3.w |
. . . . . . 7
⊢ 𝑊 = (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) |
15 | 14 | ovmpt4g 7398 |
. . . . . 6
⊢ ((𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁) ∧ (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗)) ∈ V) → (𝑖𝑊𝑗) = (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) |
16 | 10, 12, 13, 15 | syl3anc 1369 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖𝑊𝑗) = (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) |
17 | 9, 11 | ovresd 7417 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗) = (𝑖𝑊𝑗)) |
18 | | eqid 2738 |
. . . . . . 7
⊢ (𝐼(subMat1‘𝑈)𝐽) = (𝐼(subMat1‘𝑈)𝐽) |
19 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑁 ∈ ℕ) |
20 | | madjusmdet.i |
. . . . . . . 8
⊢ (𝜑 → 𝐼 ∈ (1...𝑁)) |
21 | 20 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐼 ∈ (1...𝑁)) |
22 | | madjusmdet.j |
. . . . . . . 8
⊢ (𝜑 → 𝐽 ∈ (1...𝑁)) |
23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝐽 ∈ (1...𝑁)) |
24 | | madjusmdetlem3.u |
. . . . . . . . 9
⊢ (𝜑 → 𝑈 ∈ 𝐵) |
25 | | madjusmdet.a |
. . . . . . . . . 10
⊢ 𝐴 = ((1...𝑁) Mat 𝑅) |
26 | | eqid 2738 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝑅) |
27 | | madjusmdet.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐴) |
28 | 25, 26, 27 | matbas2i 21479 |
. . . . . . . . 9
⊢ (𝑈 ∈ 𝐵 → 𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
29 | 24, 28 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
30 | 29 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑈 ∈ ((Base‘𝑅) ↑m ((1...𝑁) × (1...𝑁)))) |
31 | | fz1ssnn 13216 |
. . . . . . . 8
⊢
(1...𝑁) ⊆
ℕ |
32 | 31, 10 | sselid 3915 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑖 ∈ ℕ) |
33 | 31, 12 | sselid 3915 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → 𝑗 ∈ ℕ) |
34 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))) |
35 | | eqidd 2739 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))) |
36 | 18, 19, 19, 21, 23, 30, 32, 33, 34, 35 | smatlem 31649 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)))) |
37 | | madjusmdet.d |
. . . . . . . . 9
⊢ 𝐷 = ((1...𝑁) maDet 𝑅) |
38 | | madjusmdet.k |
. . . . . . . . 9
⊢ 𝐾 = ((1...𝑁) maAdju 𝑅) |
39 | | madjusmdet.t |
. . . . . . . . 9
⊢ · =
(.r‘𝑅) |
40 | | madjusmdet.z |
. . . . . . . . 9
⊢ 𝑍 = (ℤRHom‘𝑅) |
41 | | madjusmdet.e |
. . . . . . . . 9
⊢ 𝐸 = ((1...(𝑁 − 1)) maDet 𝑅) |
42 | | madjusmdet.r |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ CRing) |
43 | | madjusmdet.m |
. . . . . . . . 9
⊢ (𝜑 → 𝑀 ∈ 𝐵) |
44 | | madjusmdetlem2.p |
. . . . . . . . 9
⊢ 𝑃 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝐼, if(𝑖 ≤ 𝐼, (𝑖 − 1), 𝑖))) |
45 | | madjusmdetlem2.s |
. . . . . . . . 9
⊢ 𝑆 = (𝑖 ∈ (1...𝑁) ↦ if(𝑖 = 1, 𝑁, if(𝑖 ≤ 𝑁, (𝑖 − 1), 𝑖))) |
46 | 27, 25, 37, 38, 39, 40, 41, 1, 42, 20, 20, 43, 44, 45 | madjusmdetlem2 31680 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...(𝑁 − 1))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃 ∘ ◡𝑆)‘𝑖)) |
47 | 9, 46 | syldan 590 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑖 < 𝐼, 𝑖, (𝑖 + 1)) = ((𝑃 ∘ ◡𝑆)‘𝑖)) |
48 | | madjusmdetlem4.q |
. . . . . . . . 9
⊢ 𝑄 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝐽, if(𝑗 ≤ 𝐽, (𝑗 − 1), 𝑗))) |
49 | | madjusmdetlem4.t |
. . . . . . . . 9
⊢ 𝑇 = (𝑗 ∈ (1...𝑁) ↦ if(𝑗 = 1, 𝑁, if(𝑗 ≤ 𝑁, (𝑗 − 1), 𝑗))) |
50 | 27, 25, 37, 38, 39, 40, 41, 1, 42, 22, 22, 43, 48, 49 | madjusmdetlem2 31680 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (1...(𝑁 − 1))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄 ∘ ◡𝑇)‘𝑗)) |
51 | 11, 50 | syldan 590 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → if(𝑗 < 𝐽, 𝑗, (𝑗 + 1)) = ((𝑄 ∘ ◡𝑇)‘𝑗)) |
52 | 47, 51 | oveq12d 7273 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (if(𝑖 < 𝐼, 𝑖, (𝑖 + 1))𝑈if(𝑗 < 𝐽, 𝑗, (𝑗 + 1))) = (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) |
53 | 36, 52 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) |
54 | 16, 17, 53 | 3eqtr4rd 2789 |
. . . 4
⊢ ((𝜑 ∧ (𝑖 ∈ (1...(𝑁 − 1)) ∧ 𝑗 ∈ (1...(𝑁 − 1)))) → (𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)) |
55 | 54 | ralrimivva 3114 |
. . 3
⊢ (𝜑 → ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗)) |
56 | | eqid 2738 |
. . . . 5
⊢
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) =
(Base‘((1...(𝑁
− 1)) Mat 𝑅)) |
57 | 25, 27, 56, 18, 1, 20, 22, 24 | smatcl 31654 |
. . . 4
⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
58 | | fzfid 13621 |
. . . . . . . 8
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
59 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(1...𝑁) = (1...𝑁) |
60 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(SymGrp‘(1...𝑁)) = (SymGrp‘(1...𝑁)) |
61 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(Base‘(SymGrp‘(1...𝑁))) = (Base‘(SymGrp‘(1...𝑁))) |
62 | 59, 44, 60, 61 | fzto1st 31272 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ (1...𝑁) → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
63 | 20, 62 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑃 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
64 | | eluzfz2 13193 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘1) → 𝑁 ∈ (1...𝑁)) |
65 | 3, 64 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑁 ∈ (1...𝑁)) |
66 | 59, 45, 60, 61 | fzto1st 31272 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ (1...𝑁) → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
67 | 65, 66 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
68 | | eqid 2738 |
. . . . . . . . . . . . . . 15
⊢
(invg‘(SymGrp‘(1...𝑁))) =
(invg‘(SymGrp‘(1...𝑁))) |
69 | 60, 61, 68 | symginv 18925 |
. . . . . . . . . . . . . 14
⊢ (𝑆 ∈
(Base‘(SymGrp‘(1...𝑁))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = ◡𝑆) |
70 | 67, 69 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) = ◡𝑆) |
71 | 60 | symggrp 18923 |
. . . . . . . . . . . . . . 15
⊢
((1...𝑁) ∈ Fin
→ (SymGrp‘(1...𝑁)) ∈ Grp) |
72 | 58, 71 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (SymGrp‘(1...𝑁)) ∈ Grp) |
73 | 61, 68 | grpinvcl 18542 |
. . . . . . . . . . . . . 14
⊢
(((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
74 | 72, 67, 73 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
75 | 70, 74 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ (𝜑 → ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
76 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢
(+g‘(SymGrp‘(1...𝑁))) =
(+g‘(SymGrp‘(1...𝑁))) |
77 | 60, 61, 76 | symgov 18906 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))◡𝑆) = (𝑃 ∘ ◡𝑆)) |
78 | 60, 61, 76 | symgcl 18907 |
. . . . . . . . . . . . 13
⊢ ((𝑃 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃(+g‘(SymGrp‘(1...𝑁)))◡𝑆) ∈ (Base‘(SymGrp‘(1...𝑁)))) |
79 | 77, 78 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ ((𝑃 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑆 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑃 ∘ ◡𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
80 | 63, 75, 79 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑃 ∘ ◡𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
81 | 80 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑃 ∘ ◡𝑆) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
82 | | simp2 1135 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑖 ∈ (1...𝑁)) |
83 | 60, 61 | symgfv 18902 |
. . . . . . . . . 10
⊢ (((𝑃 ∘ ◡𝑆) ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ 𝑖 ∈ (1...𝑁)) → ((𝑃 ∘ ◡𝑆)‘𝑖) ∈ (1...𝑁)) |
84 | 81, 82, 83 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑃 ∘ ◡𝑆)‘𝑖) ∈ (1...𝑁)) |
85 | 59, 48, 60, 61 | fzto1st 31272 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ (1...𝑁) → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
86 | 22, 85 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
87 | 59, 49, 60, 61 | fzto1st 31272 |
. . . . . . . . . . . . . . 15
⊢ (𝑁 ∈ (1...𝑁) → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
88 | 65, 87 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
89 | 60, 61, 68 | symginv 18925 |
. . . . . . . . . . . . . 14
⊢ (𝑇 ∈
(Base‘(SymGrp‘(1...𝑁))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = ◡𝑇) |
90 | 88, 89 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) = ◡𝑇) |
91 | 61, 68 | grpinvcl 18542 |
. . . . . . . . . . . . . 14
⊢
(((SymGrp‘(1...𝑁)) ∈ Grp ∧ 𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
92 | 72, 88, 91 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 →
((invg‘(SymGrp‘(1...𝑁)))‘𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
93 | 90, 92 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ (𝜑 → ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) |
94 | 60, 61, 76 | symgov 18906 |
. . . . . . . . . . . . 13
⊢ ((𝑄 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))◡𝑇) = (𝑄 ∘ ◡𝑇)) |
95 | 60, 61, 76 | symgcl 18907 |
. . . . . . . . . . . . 13
⊢ ((𝑄 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄(+g‘(SymGrp‘(1...𝑁)))◡𝑇) ∈ (Base‘(SymGrp‘(1...𝑁)))) |
96 | 94, 95 | eqeltrrd 2840 |
. . . . . . . . . . . 12
⊢ ((𝑄 ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ ◡𝑇 ∈ (Base‘(SymGrp‘(1...𝑁)))) → (𝑄 ∘ ◡𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
97 | 86, 93, 96 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑄 ∘ ◡𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
98 | 97 | 3ad2ant1 1131 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (𝑄 ∘ ◡𝑇) ∈
(Base‘(SymGrp‘(1...𝑁)))) |
99 | | simp3 1136 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑗 ∈ (1...𝑁)) |
100 | 60, 61 | symgfv 18902 |
. . . . . . . . . 10
⊢ (((𝑄 ∘ ◡𝑇) ∈
(Base‘(SymGrp‘(1...𝑁))) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄 ∘ ◡𝑇)‘𝑗) ∈ (1...𝑁)) |
101 | 98, 99, 100 | syl2anc 583 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → ((𝑄 ∘ ◡𝑇)‘𝑗) ∈ (1...𝑁)) |
102 | 24 | 3ad2ant1 1131 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → 𝑈 ∈ 𝐵) |
103 | 25, 26, 27, 84, 101, 102 | matecld 21483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁) ∧ 𝑗 ∈ (1...𝑁)) → (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗)) ∈ (Base‘𝑅)) |
104 | 25, 26, 27, 58, 42, 103 | matbas2d 21480 |
. . . . . . 7
⊢ (𝜑 → (𝑖 ∈ (1...𝑁), 𝑗 ∈ (1...𝑁) ↦ (((𝑃 ∘ ◡𝑆)‘𝑖)𝑈((𝑄 ∘ ◡𝑇)‘𝑗))) ∈ 𝐵) |
105 | 14, 104 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → 𝑊 ∈ 𝐵) |
106 | 25, 27 | submatres 31658 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ 𝑊 ∈ 𝐵) → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
107 | 1, 105, 106 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → (𝑁(subMat1‘𝑊)𝑁) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
108 | | eqid 2738 |
. . . . . 6
⊢ (𝑁(subMat1‘𝑊)𝑁) = (𝑁(subMat1‘𝑊)𝑁) |
109 | 25, 27, 56, 108, 1, 65, 65, 105 | smatcl 31654 |
. . . . 5
⊢ (𝜑 → (𝑁(subMat1‘𝑊)𝑁) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅))) |
110 | 107, 109 | eqeltrrd 2840 |
. . . 4
⊢ (𝜑 → (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈
(Base‘((1...(𝑁
− 1)) Mat 𝑅))) |
111 | | eqid 2738 |
. . . . 5
⊢
((1...(𝑁 − 1))
Mat 𝑅) = ((1...(𝑁 − 1)) Mat 𝑅) |
112 | 111, 56 | eqmat 21481 |
. . . 4
⊢ (((𝐼(subMat1‘𝑈)𝐽) ∈ (Base‘((1...(𝑁 − 1)) Mat 𝑅)) ∧ (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ∈
(Base‘((1...(𝑁
− 1)) Mat 𝑅))) →
((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))) |
113 | 57, 110, 112 | syl2anc 583 |
. . 3
⊢ (𝜑 → ((𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1)))) ↔ ∀𝑖 ∈ (1...(𝑁 − 1))∀𝑗 ∈ (1...(𝑁 − 1))(𝑖(𝐼(subMat1‘𝑈)𝐽)𝑗) = (𝑖(𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))𝑗))) |
114 | 55, 113 | mpbird 256 |
. 2
⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑊 ↾ ((1...(𝑁 − 1)) × (1...(𝑁 − 1))))) |
115 | 114, 107 | eqtr4d 2781 |
1
⊢ (𝜑 → (𝐼(subMat1‘𝑈)𝐽) = (𝑁(subMat1‘𝑊)𝑁)) |