MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xmstri3 Structured version   Visualization version   GIF version

Theorem xmstri3 24385
Description: Triangle inequality for the distance function of an extended metric. (Contributed by Mario Carneiro, 2-Oct-2015.)
Hypotheses
Ref Expression
mscl.x 𝑋 = (Base‘𝑀)
mscl.d 𝐷 = (dist‘𝑀)
Assertion
Ref Expression
xmstri3 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶)))

Proof of Theorem xmstri3
StepHypRef Expression
1 mscl.x . . . 4 𝑋 = (Base‘𝑀)
2 mscl.d . . . 4 𝐷 = (dist‘𝑀)
31, 2xmsxmet2 24374 . . 3 (𝑀 ∈ ∞MetSp → (𝐷 ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋))
4 xmettri3 24268 . . 3 (((𝐷 ↾ (𝑋 × 𝑋)) ∈ (∞Met‘𝑋) ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) +𝑒 (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶)))
53, 4sylan 580 . 2 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) ≤ ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) +𝑒 (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶)))
6 simpr1 1195 . . 3 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐴𝑋)
7 simpr2 1196 . . 3 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐵𝑋)
86, 7ovresd 7513 . 2 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐵) = (𝐴𝐷𝐵))
9 simpr3 1197 . . . 4 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → 𝐶𝑋)
106, 9ovresd 7513 . . 3 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) = (𝐴𝐷𝐶))
117, 9ovresd 7513 . . 3 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶) = (𝐵𝐷𝐶))
1210, 11oveq12d 7364 . 2 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴(𝐷 ↾ (𝑋 × 𝑋))𝐶) +𝑒 (𝐵(𝐷 ↾ (𝑋 × 𝑋))𝐶)) = ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶)))
135, 8, 123brtr3d 5120 1 ((𝑀 ∈ ∞MetSp ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝐷𝐵) ≤ ((𝐴𝐷𝐶) +𝑒 (𝐵𝐷𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111   class class class wbr 5089   × cxp 5612  cres 5616  cfv 6481  (class class class)co 7346  cle 11147   +𝑒 cxad 13009  Basecbs 17120  distcds 17170  ∞Metcxmet 21276  ∞MetSpcxms 24232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-bl 21286  df-mopn 21287  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-xms 24235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator