Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  padd12N Structured version   Visualization version   GIF version

Theorem padd12N 37040
Description: Commutative/associative law for projective subspace sum. (Contributed by NM, 14-Jan-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
paddass.a 𝐴 = (Atoms‘𝐾)
paddass.p + = (+𝑃𝐾)
Assertion
Ref Expression
padd12N ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))

Proof of Theorem padd12N
StepHypRef Expression
1 hllat 36564 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
21adantr 484 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝐾 ∈ Lat)
3 simpr1 1191 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑋𝐴)
4 simpr2 1192 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑌𝐴)
5 paddass.a . . . . 5 𝐴 = (Atoms‘𝐾)
6 paddass.p . . . . 5 + = (+𝑃𝐾)
75, 6paddcom 37014 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐴𝑌𝐴) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
82, 3, 4, 7syl3anc 1368 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + 𝑌) = (𝑌 + 𝑋))
98oveq1d 7155 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = ((𝑌 + 𝑋) + 𝑍))
105, 6paddass 37039 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑋 + 𝑌) + 𝑍) = (𝑋 + (𝑌 + 𝑍)))
11 simpl 486 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝐾 ∈ HL)
12 simpr3 1193 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → 𝑍𝐴)
135, 6paddass 37039 . . 3 ((𝐾 ∈ HL ∧ (𝑌𝐴𝑋𝐴𝑍𝐴)) → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍)))
1411, 4, 3, 12, 13syl13anc 1369 . 2 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → ((𝑌 + 𝑋) + 𝑍) = (𝑌 + (𝑋 + 𝑍)))
159, 10, 143eqtr3d 2867 1 ((𝐾 ∈ HL ∧ (𝑋𝐴𝑌𝐴𝑍𝐴)) → (𝑋 + (𝑌 + 𝑍)) = (𝑌 + (𝑋 + 𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2115  wss 3918  cfv 6338  (class class class)co 7140  Latclat 17646  Atomscatm 36464  HLchlt 36551  +𝑃cpadd 36996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5173  ax-sep 5186  ax-nul 5193  ax-pow 5249  ax-pr 5313  ax-un 7446
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3014  df-ral 3137  df-rex 3138  df-reu 3139  df-rab 3141  df-v 3481  df-sbc 3758  df-csb 3866  df-dif 3921  df-un 3923  df-in 3925  df-ss 3935  df-nul 4275  df-if 4449  df-pw 4522  df-sn 4549  df-pr 4551  df-op 4555  df-uni 4822  df-iun 4904  df-br 5050  df-opab 5112  df-mpt 5130  df-id 5443  df-xp 5544  df-rel 5545  df-cnv 5546  df-co 5547  df-dm 5548  df-rn 5549  df-res 5550  df-ima 5551  df-iota 6297  df-fun 6340  df-fn 6341  df-f 6342  df-f1 6343  df-fo 6344  df-f1o 6345  df-fv 6346  df-riota 7098  df-ov 7143  df-oprab 7144  df-mpo 7145  df-1st 7674  df-2nd 7675  df-proset 17529  df-poset 17547  df-plt 17559  df-lub 17575  df-glb 17576  df-join 17577  df-meet 17578  df-p0 17640  df-lat 17647  df-clat 17709  df-oposet 36377  df-ol 36379  df-oml 36380  df-covers 36467  df-ats 36468  df-atl 36499  df-cvlat 36523  df-hlat 36552  df-padd 36997
This theorem is referenced by:  padd4N  37041  pmodl42N  37052
  Copyright terms: Public domain W3C validator