Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodN Structured version   Visualization version   GIF version

Theorem pmodN 39497
Description: The modular law for projective subspaces. (Contributed by NM, 26-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmod.a 𝐴 = (Atoms‘𝐾)
pmod.s 𝑆 = (PSubSp‘𝐾)
pmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodN ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋 ∩ (𝑌 + (𝑋𝑍))) = ((𝑋𝑌) + (𝑋𝑍)))

Proof of Theorem pmodN
StepHypRef Expression
1 incom 4201 . 2 (𝑋 ∩ ((𝑋𝑍) + 𝑌)) = (((𝑋𝑍) + 𝑌) ∩ 𝑋)
2 hllat 39009 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32adantr 479 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝐾 ∈ Lat)
4 simpr2 1192 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝑌𝐴)
5 inss2 4230 . . . . 5 (𝑋𝑍) ⊆ 𝑍
6 simpr3 1193 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝑍𝐴)
75, 6sstrid 3990 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋𝑍) ⊆ 𝐴)
8 pmod.a . . . . 5 𝐴 = (Atoms‘𝐾)
9 pmod.p . . . . 5 + = (+𝑃𝐾)
108, 9paddcom 39460 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐴 ∧ (𝑋𝑍) ⊆ 𝐴) → (𝑌 + (𝑋𝑍)) = ((𝑋𝑍) + 𝑌))
113, 4, 7, 10syl3anc 1368 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑌 + (𝑋𝑍)) = ((𝑋𝑍) + 𝑌))
1211ineq2d 4212 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋 ∩ (𝑌 + (𝑋𝑍))) = (𝑋 ∩ ((𝑋𝑍) + 𝑌)))
13 incom 4201 . . . 4 (𝑋𝑌) = (𝑌𝑋)
1413oveq2i 7434 . . 3 ((𝑋𝑍) + (𝑋𝑌)) = ((𝑋𝑍) + (𝑌𝑋))
15 inss2 4230 . . . . 5 (𝑋𝑌) ⊆ 𝑌
1615, 4sstrid 3990 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋𝑌) ⊆ 𝐴)
178, 9paddcom 39460 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝑌) ⊆ 𝐴 ∧ (𝑋𝑍) ⊆ 𝐴) → ((𝑋𝑌) + (𝑋𝑍)) = ((𝑋𝑍) + (𝑋𝑌)))
183, 16, 7, 17syl3anc 1368 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → ((𝑋𝑌) + (𝑋𝑍)) = ((𝑋𝑍) + (𝑋𝑌)))
19 simpr1 1191 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝑋𝑆)
207, 4, 193jca 1125 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → ((𝑋𝑍) ⊆ 𝐴𝑌𝐴𝑋𝑆))
21 inss1 4229 . . . . 5 (𝑋𝑍) ⊆ 𝑋
22 pmod.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
238, 22, 9pmod1i 39495 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑋𝑍) ⊆ 𝐴𝑌𝐴𝑋𝑆)) → ((𝑋𝑍) ⊆ 𝑋 → (((𝑋𝑍) + 𝑌) ∩ 𝑋) = ((𝑋𝑍) + (𝑌𝑋))))
2421, 23mpi 20 . . . 4 ((𝐾 ∈ HL ∧ ((𝑋𝑍) ⊆ 𝐴𝑌𝐴𝑋𝑆)) → (((𝑋𝑍) + 𝑌) ∩ 𝑋) = ((𝑋𝑍) + (𝑌𝑋)))
2520, 24syldan 589 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (((𝑋𝑍) + 𝑌) ∩ 𝑋) = ((𝑋𝑍) + (𝑌𝑋)))
2614, 18, 253eqtr4a 2791 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → ((𝑋𝑌) + (𝑋𝑍)) = (((𝑋𝑍) + 𝑌) ∩ 𝑋))
271, 12, 263eqtr4a 2791 1 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋 ∩ (𝑌 + (𝑋𝑍))) = ((𝑋𝑌) + (𝑋𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  cin 3945  wss 3946  cfv 6553  (class class class)co 7423  Latclat 18451  Atomscatm 38909  HLchlt 38996  PSubSpcpsubsp 39143  +𝑃cpadd 39442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-riota 7379  df-ov 7426  df-oprab 7427  df-mpo 7428  df-1st 8002  df-2nd 8003  df-proset 18315  df-poset 18333  df-plt 18350  df-lub 18366  df-glb 18367  df-join 18368  df-meet 18369  df-p0 18445  df-lat 18452  df-covers 38912  df-ats 38913  df-atl 38944  df-cvlat 38968  df-hlat 38997  df-psubsp 39150  df-padd 39443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator