Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodN Structured version   Visualization version   GIF version

Theorem pmodN 39844
Description: The modular law for projective subspaces. (Contributed by NM, 26-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmod.a 𝐴 = (Atoms‘𝐾)
pmod.s 𝑆 = (PSubSp‘𝐾)
pmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodN ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋 ∩ (𝑌 + (𝑋𝑍))) = ((𝑋𝑌) + (𝑋𝑍)))

Proof of Theorem pmodN
StepHypRef Expression
1 incom 4172 . 2 (𝑋 ∩ ((𝑋𝑍) + 𝑌)) = (((𝑋𝑍) + 𝑌) ∩ 𝑋)
2 hllat 39356 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32adantr 480 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝐾 ∈ Lat)
4 simpr2 1196 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝑌𝐴)
5 inss2 4201 . . . . 5 (𝑋𝑍) ⊆ 𝑍
6 simpr3 1197 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝑍𝐴)
75, 6sstrid 3958 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋𝑍) ⊆ 𝐴)
8 pmod.a . . . . 5 𝐴 = (Atoms‘𝐾)
9 pmod.p . . . . 5 + = (+𝑃𝐾)
108, 9paddcom 39807 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐴 ∧ (𝑋𝑍) ⊆ 𝐴) → (𝑌 + (𝑋𝑍)) = ((𝑋𝑍) + 𝑌))
113, 4, 7, 10syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑌 + (𝑋𝑍)) = ((𝑋𝑍) + 𝑌))
1211ineq2d 4183 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋 ∩ (𝑌 + (𝑋𝑍))) = (𝑋 ∩ ((𝑋𝑍) + 𝑌)))
13 incom 4172 . . . 4 (𝑋𝑌) = (𝑌𝑋)
1413oveq2i 7398 . . 3 ((𝑋𝑍) + (𝑋𝑌)) = ((𝑋𝑍) + (𝑌𝑋))
15 inss2 4201 . . . . 5 (𝑋𝑌) ⊆ 𝑌
1615, 4sstrid 3958 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋𝑌) ⊆ 𝐴)
178, 9paddcom 39807 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝑌) ⊆ 𝐴 ∧ (𝑋𝑍) ⊆ 𝐴) → ((𝑋𝑌) + (𝑋𝑍)) = ((𝑋𝑍) + (𝑋𝑌)))
183, 16, 7, 17syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → ((𝑋𝑌) + (𝑋𝑍)) = ((𝑋𝑍) + (𝑋𝑌)))
19 simpr1 1195 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝑋𝑆)
207, 4, 193jca 1128 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → ((𝑋𝑍) ⊆ 𝐴𝑌𝐴𝑋𝑆))
21 inss1 4200 . . . . 5 (𝑋𝑍) ⊆ 𝑋
22 pmod.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
238, 22, 9pmod1i 39842 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑋𝑍) ⊆ 𝐴𝑌𝐴𝑋𝑆)) → ((𝑋𝑍) ⊆ 𝑋 → (((𝑋𝑍) + 𝑌) ∩ 𝑋) = ((𝑋𝑍) + (𝑌𝑋))))
2421, 23mpi 20 . . . 4 ((𝐾 ∈ HL ∧ ((𝑋𝑍) ⊆ 𝐴𝑌𝐴𝑋𝑆)) → (((𝑋𝑍) + 𝑌) ∩ 𝑋) = ((𝑋𝑍) + (𝑌𝑋)))
2520, 24syldan 591 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (((𝑋𝑍) + 𝑌) ∩ 𝑋) = ((𝑋𝑍) + (𝑌𝑋)))
2614, 18, 253eqtr4a 2790 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → ((𝑋𝑌) + (𝑋𝑍)) = (((𝑋𝑍) + 𝑌) ∩ 𝑋))
271, 12, 263eqtr4a 2790 1 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋 ∩ (𝑌 + (𝑋𝑍))) = ((𝑋𝑌) + (𝑋𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3913  wss 3914  cfv 6511  (class class class)co 7387  Latclat 18390  Atomscatm 39256  HLchlt 39343  PSubSpcpsubsp 39490  +𝑃cpadd 39789
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-proset 18255  df-poset 18274  df-plt 18289  df-lub 18305  df-glb 18306  df-join 18307  df-meet 18308  df-p0 18384  df-lat 18391  df-covers 39259  df-ats 39260  df-atl 39291  df-cvlat 39315  df-hlat 39344  df-psubsp 39497  df-padd 39790
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator