Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmodN Structured version   Visualization version   GIF version

Theorem pmodN 40022
Description: The modular law for projective subspaces. (Contributed by NM, 26-Mar-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
pmod.a 𝐴 = (Atoms‘𝐾)
pmod.s 𝑆 = (PSubSp‘𝐾)
pmod.p + = (+𝑃𝐾)
Assertion
Ref Expression
pmodN ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋 ∩ (𝑌 + (𝑋𝑍))) = ((𝑋𝑌) + (𝑋𝑍)))

Proof of Theorem pmodN
StepHypRef Expression
1 incom 4158 . 2 (𝑋 ∩ ((𝑋𝑍) + 𝑌)) = (((𝑋𝑍) + 𝑌) ∩ 𝑋)
2 hllat 39535 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
32adantr 480 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝐾 ∈ Lat)
4 simpr2 1196 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝑌𝐴)
5 inss2 4187 . . . . 5 (𝑋𝑍) ⊆ 𝑍
6 simpr3 1197 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝑍𝐴)
75, 6sstrid 3942 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋𝑍) ⊆ 𝐴)
8 pmod.a . . . . 5 𝐴 = (Atoms‘𝐾)
9 pmod.p . . . . 5 + = (+𝑃𝐾)
108, 9paddcom 39985 . . . 4 ((𝐾 ∈ Lat ∧ 𝑌𝐴 ∧ (𝑋𝑍) ⊆ 𝐴) → (𝑌 + (𝑋𝑍)) = ((𝑋𝑍) + 𝑌))
113, 4, 7, 10syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑌 + (𝑋𝑍)) = ((𝑋𝑍) + 𝑌))
1211ineq2d 4169 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋 ∩ (𝑌 + (𝑋𝑍))) = (𝑋 ∩ ((𝑋𝑍) + 𝑌)))
13 incom 4158 . . . 4 (𝑋𝑌) = (𝑌𝑋)
1413oveq2i 7366 . . 3 ((𝑋𝑍) + (𝑋𝑌)) = ((𝑋𝑍) + (𝑌𝑋))
15 inss2 4187 . . . . 5 (𝑋𝑌) ⊆ 𝑌
1615, 4sstrid 3942 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋𝑌) ⊆ 𝐴)
178, 9paddcom 39985 . . . 4 ((𝐾 ∈ Lat ∧ (𝑋𝑌) ⊆ 𝐴 ∧ (𝑋𝑍) ⊆ 𝐴) → ((𝑋𝑌) + (𝑋𝑍)) = ((𝑋𝑍) + (𝑋𝑌)))
183, 16, 7, 17syl3anc 1373 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → ((𝑋𝑌) + (𝑋𝑍)) = ((𝑋𝑍) + (𝑋𝑌)))
19 simpr1 1195 . . . . 5 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → 𝑋𝑆)
207, 4, 193jca 1128 . . . 4 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → ((𝑋𝑍) ⊆ 𝐴𝑌𝐴𝑋𝑆))
21 inss1 4186 . . . . 5 (𝑋𝑍) ⊆ 𝑋
22 pmod.s . . . . . 6 𝑆 = (PSubSp‘𝐾)
238, 22, 9pmod1i 40020 . . . . 5 ((𝐾 ∈ HL ∧ ((𝑋𝑍) ⊆ 𝐴𝑌𝐴𝑋𝑆)) → ((𝑋𝑍) ⊆ 𝑋 → (((𝑋𝑍) + 𝑌) ∩ 𝑋) = ((𝑋𝑍) + (𝑌𝑋))))
2421, 23mpi 20 . . . 4 ((𝐾 ∈ HL ∧ ((𝑋𝑍) ⊆ 𝐴𝑌𝐴𝑋𝑆)) → (((𝑋𝑍) + 𝑌) ∩ 𝑋) = ((𝑋𝑍) + (𝑌𝑋)))
2520, 24syldan 591 . . 3 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (((𝑋𝑍) + 𝑌) ∩ 𝑋) = ((𝑋𝑍) + (𝑌𝑋)))
2614, 18, 253eqtr4a 2794 . 2 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → ((𝑋𝑌) + (𝑋𝑍)) = (((𝑋𝑍) + 𝑌) ∩ 𝑋))
271, 12, 263eqtr4a 2794 1 ((𝐾 ∈ HL ∧ (𝑋𝑆𝑌𝐴𝑍𝐴)) → (𝑋 ∩ (𝑌 + (𝑋𝑍))) = ((𝑋𝑌) + (𝑋𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  cin 3897  wss 3898  cfv 6489  (class class class)co 7355  Latclat 18345  Atomscatm 39435  HLchlt 39522  PSubSpcpsubsp 39668  +𝑃cpadd 39967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-proset 18208  df-poset 18227  df-plt 18242  df-lub 18258  df-glb 18259  df-join 18260  df-meet 18261  df-p0 18337  df-lat 18346  df-covers 39438  df-ats 39439  df-atl 39470  df-cvlat 39494  df-hlat 39523  df-psubsp 39675  df-padd 39968
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator