Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sspmaplubN | Structured version Visualization version GIF version |
Description: A set of atoms is a subset of the projective map of its LUB. (Contributed by NM, 6-Mar-2012.) (New usage is discouraged.) |
Ref | Expression |
---|---|
sspmaplub.u | ⊢ 𝑈 = (lub‘𝐾) |
sspmaplub.a | ⊢ 𝐴 = (Atoms‘𝐾) |
sspmaplub.m | ⊢ 𝑀 = (pmap‘𝐾) |
Ref | Expression |
---|---|
sspmaplubN | ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → 𝑆 ⊆ (𝑀‘(𝑈‘𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sspmaplub.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
2 | eqid 2739 | . . 3 ⊢ (⊥𝑃‘𝐾) = (⊥𝑃‘𝐾) | |
3 | 1, 2 | 2polssN 37835 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → 𝑆 ⊆ ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆))) |
4 | sspmaplub.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
5 | sspmaplub.m | . . 3 ⊢ 𝑀 = (pmap‘𝐾) | |
6 | 4, 1, 5, 2 | 2polvalN 37834 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → ((⊥𝑃‘𝐾)‘((⊥𝑃‘𝐾)‘𝑆)) = (𝑀‘(𝑈‘𝑆))) |
7 | 3, 6 | sseqtrd 3958 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑆 ⊆ 𝐴) → 𝑆 ⊆ (𝑀‘(𝑈‘𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2112 ⊆ wss 3884 ‘cfv 6415 lubclub 17917 Atomscatm 37183 HLchlt 37270 pmapcpmap 37417 ⊥𝑃cpolN 37822 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-riotaBAD 36873 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rmo 3072 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5153 df-id 5479 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-undef 8057 df-proset 17903 df-poset 17921 df-plt 17938 df-lub 17954 df-glb 17955 df-join 17956 df-meet 17957 df-p0 18033 df-p1 18034 df-lat 18040 df-clat 18107 df-oposet 37096 df-ol 37098 df-oml 37099 df-covers 37186 df-ats 37187 df-atl 37218 df-cvlat 37242 df-hlat 37271 df-pmap 37424 df-polarityN 37823 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |