| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > psrvalstr | Structured version Visualization version GIF version | ||
| Description: The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.) |
| Ref | Expression |
|---|---|
| psrvalstr | ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉}) Struct 〈1, 9〉 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} | |
| 2 | 1 | rngstr 17208 | . 2 ⊢ {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} Struct 〈1, 3〉 |
| 3 | 5nn 12217 | . . 3 ⊢ 5 ∈ ℕ | |
| 4 | scandx 17224 | . . 3 ⊢ (Scalar‘ndx) = 5 | |
| 5 | 5lt6 12307 | . . 3 ⊢ 5 < 6 | |
| 6 | 6nn 12220 | . . 3 ⊢ 6 ∈ ℕ | |
| 7 | vscandx 17229 | . . 3 ⊢ ( ·𝑠 ‘ndx) = 6 | |
| 8 | 6lt9 12327 | . . 3 ⊢ 6 < 9 | |
| 9 | 9nn 12229 | . . 3 ⊢ 9 ∈ ℕ | |
| 10 | tsetndx 17262 | . . 3 ⊢ (TopSet‘ndx) = 9 | |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | strle3 17077 | . 2 ⊢ {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉} Struct 〈5, 9〉 |
| 12 | 3lt5 12304 | . 2 ⊢ 3 < 5 | |
| 13 | 2, 11, 12 | strleun 17074 | 1 ⊢ ({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(.r‘ndx), × 〉} ∪ {〈(Scalar‘ndx), 𝑅〉, 〈( ·𝑠 ‘ndx), · 〉, 〈(TopSet‘ndx), 𝐽〉}) Struct 〈1, 9〉 |
| Colors of variables: wff setvar class |
| Syntax hints: ∪ cun 3895 {ctp 4579 〈cop 4581 class class class wbr 5093 ‘cfv 6487 1c1 11013 3c3 12187 5c5 12189 6c6 12190 9c9 12193 Struct cstr 17063 ndxcnx 17110 Basecbs 17126 +gcplusg 17167 .rcmulr 17168 Scalarcsca 17170 ·𝑠 cvsca 17171 TopSetcts 17173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-uz 12739 df-fz 13414 df-struct 17064 df-slot 17099 df-ndx 17111 df-base 17127 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-tset 17186 |
| This theorem is referenced by: psrbas 21876 psrplusg 21879 psrmulr 21885 psrsca 21890 psrvscafval 21891 |
| Copyright terms: Public domain | W3C validator |