![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > psrvalstr | Structured version Visualization version GIF version |
Description: The multivariate power series structure is a function. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
psrvalstr | ⊢ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(TopSet‘ndx), 𝐽⟩}) Struct ⟨1, 9⟩ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} | |
2 | 1 | rngstr 17278 | . 2 ⊢ {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} Struct ⟨1, 3⟩ |
3 | 5nn 12328 | . . 3 ⊢ 5 ∈ ℕ | |
4 | scandx 17294 | . . 3 ⊢ (Scalar‘ndx) = 5 | |
5 | 5lt6 12423 | . . 3 ⊢ 5 < 6 | |
6 | 6nn 12331 | . . 3 ⊢ 6 ∈ ℕ | |
7 | vscandx 17299 | . . 3 ⊢ ( ·𝑠 ‘ndx) = 6 | |
8 | 6lt9 12443 | . . 3 ⊢ 6 < 9 | |
9 | 9nn 12340 | . . 3 ⊢ 9 ∈ ℕ | |
10 | tsetndx 17332 | . . 3 ⊢ (TopSet‘ndx) = 9 | |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | strle3 17128 | . 2 ⊢ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(TopSet‘ndx), 𝐽⟩} Struct ⟨5, 9⟩ |
12 | 3lt5 12420 | . 2 ⊢ 3 < 5 | |
13 | 2, 11, 12 | strleun 17125 | 1 ⊢ ({⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(.r‘ndx), × ⟩} ∪ {⟨(Scalar‘ndx), 𝑅⟩, ⟨( ·𝑠 ‘ndx), · ⟩, ⟨(TopSet‘ndx), 𝐽⟩}) Struct ⟨1, 9⟩ |
Colors of variables: wff setvar class |
Syntax hints: ∪ cun 3937 {ctp 4628 ⟨cop 4630 class class class wbr 5143 ‘cfv 6543 1c1 11139 3c3 12298 5c5 12300 6c6 12301 9c9 12304 Struct cstr 17114 ndxcnx 17161 Basecbs 17179 +gcplusg 17232 .rcmulr 17233 Scalarcsca 17235 ·𝑠 cvsca 17236 TopSetcts 17238 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-fin 8966 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 df-struct 17115 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-tset 17251 |
This theorem is referenced by: psrbas 21882 psrplusg 21885 psrmulr 21891 psrsca 21896 psrvscafval 21897 |
Copyright terms: Public domain | W3C validator |