Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwfi2en | Structured version Visualization version GIF version |
Description: Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
pwfi2en.s | ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} |
Ref | Expression |
---|---|
pwfi2en | ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwfi2en.s | . . 3 ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} | |
2 | eqid 2738 | . . 3 ⊢ (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) | |
3 | 1, 2 | pwfi2f1o 40921 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) |
4 | ovex 7308 | . . . 4 ⊢ (2o ↑m 𝐴) ∈ V | |
5 | 1, 4 | rabex2 5258 | . . 3 ⊢ 𝑆 ∈ V |
6 | 5 | f1oen 8761 | . 2 ⊢ ((𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin) → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
7 | 3, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 {crab 3068 ∩ cin 3886 ∅c0 4256 𝒫 cpw 4533 {csn 4561 class class class wbr 5074 ↦ cmpt 5157 ◡ccnv 5588 “ cima 5592 –1-1-onto→wf1o 6432 (class class class)co 7275 1oc1o 8290 2oc2o 8291 ↑m cmap 8615 ≈ cen 8730 Fincfn 8733 finSupp cfsupp 9128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-supp 7978 df-1o 8297 df-2o 8298 df-map 8617 df-en 8734 df-fsupp 9129 |
This theorem is referenced by: frlmpwfi 40923 |
Copyright terms: Public domain | W3C validator |