| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pwfi2en | Structured version Visualization version GIF version | ||
| Description: Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| pwfi2en.s | ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} |
| Ref | Expression |
|---|---|
| pwfi2en | ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfi2en.s | . . 3 ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} | |
| 2 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) | |
| 3 | 1, 2 | pwfi2f1o 43087 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) |
| 4 | ovex 7443 | . . . 4 ⊢ (2o ↑m 𝐴) ∈ V | |
| 5 | 1, 4 | rabex2 5316 | . . 3 ⊢ 𝑆 ∈ V |
| 6 | 5 | f1oen 8992 | . 2 ⊢ ((𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin) → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
| 7 | 3, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {crab 3420 ∩ cin 3930 ∅c0 4313 𝒫 cpw 4580 {csn 4606 class class class wbr 5124 ↦ cmpt 5206 ◡ccnv 5658 “ cima 5662 –1-1-onto→wf1o 6535 (class class class)co 7410 1oc1o 8478 2oc2o 8479 ↑m cmap 8845 ≈ cen 8961 Fincfn 8964 finSupp cfsupp 9378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-supp 8165 df-1o 8485 df-2o 8486 df-map 8847 df-en 8965 df-fsupp 9379 |
| This theorem is referenced by: frlmpwfi 43089 |
| Copyright terms: Public domain | W3C validator |