Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pwfi2en | Structured version Visualization version GIF version |
Description: Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
Ref | Expression |
---|---|
pwfi2en.s | ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} |
Ref | Expression |
---|---|
pwfi2en | ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwfi2en.s | . . 3 ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} | |
2 | eqid 2736 | . . 3 ⊢ (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) | |
3 | 1, 2 | pwfi2f1o 41235 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) |
4 | ovex 7371 | . . . 4 ⊢ (2o ↑m 𝐴) ∈ V | |
5 | 1, 4 | rabex2 5279 | . . 3 ⊢ 𝑆 ∈ V |
6 | 5 | f1oen 8835 | . 2 ⊢ ((𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin) → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
7 | 3, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 {crab 3403 ∩ cin 3897 ∅c0 4270 𝒫 cpw 4548 {csn 4574 class class class wbr 5093 ↦ cmpt 5176 ◡ccnv 5620 “ cima 5624 –1-1-onto→wf1o 6479 (class class class)co 7338 1oc1o 8361 2oc2o 8362 ↑m cmap 8687 ≈ cen 8802 Fincfn 8805 finSupp cfsupp 9227 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ord 6306 df-on 6307 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-1st 7900 df-2nd 7901 df-supp 8049 df-1o 8368 df-2o 8369 df-map 8689 df-en 8806 df-fsupp 9228 |
This theorem is referenced by: frlmpwfi 41237 |
Copyright terms: Public domain | W3C validator |