Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwfi2en Structured version   Visualization version   GIF version

Theorem pwfi2en 43088
Description: Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.)
Hypothesis
Ref Expression
pwfi2en.s 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
Assertion
Ref Expression
pwfi2en (𝐴𝑉𝑆 ≈ (𝒫 𝐴 ∩ Fin))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem pwfi2en
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwfi2en.s . . 3 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
2 eqid 2736 . . 3 (𝑥𝑆 ↦ (𝑥 “ {1o})) = (𝑥𝑆 ↦ (𝑥 “ {1o}))
31, 2pwfi2f1o 43087 . 2 (𝐴𝑉 → (𝑥𝑆 ↦ (𝑥 “ {1o})):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
4 ovex 7443 . . . 4 (2om 𝐴) ∈ V
51, 4rabex2 5316 . . 3 𝑆 ∈ V
65f1oen 8992 . 2 ((𝑥𝑆 ↦ (𝑥 “ {1o})):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) → 𝑆 ≈ (𝒫 𝐴 ∩ Fin))
73, 6syl 17 1 (𝐴𝑉𝑆 ≈ (𝒫 𝐴 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {crab 3420  cin 3930  c0 4313  𝒫 cpw 4580  {csn 4606   class class class wbr 5124  cmpt 5206  ccnv 5658  cima 5662  1-1-ontowf1o 6535  (class class class)co 7410  1oc1o 8478  2oc2o 8479  m cmap 8845  cen 8961  Fincfn 8964   finSupp cfsupp 9378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-ord 6360  df-on 6361  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-1st 7993  df-2nd 7994  df-supp 8165  df-1o 8485  df-2o 8486  df-map 8847  df-en 8965  df-fsupp 9379
This theorem is referenced by:  frlmpwfi  43089
  Copyright terms: Public domain W3C validator