| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pwfi2en | Structured version Visualization version GIF version | ||
| Description: Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| pwfi2en.s | ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} |
| Ref | Expression |
|---|---|
| pwfi2en | ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfi2en.s | . . 3 ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} | |
| 2 | eqid 2733 | . . 3 ⊢ (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) | |
| 3 | 1, 2 | pwfi2f1o 43213 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) |
| 4 | ovex 7385 | . . . 4 ⊢ (2o ↑m 𝐴) ∈ V | |
| 5 | 1, 4 | rabex2 5281 | . . 3 ⊢ 𝑆 ∈ V |
| 6 | 5 | f1oen 8901 | . 2 ⊢ ((𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin) → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
| 7 | 3, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 {crab 3396 ∩ cin 3897 ∅c0 4282 𝒫 cpw 4549 {csn 4575 class class class wbr 5093 ↦ cmpt 5174 ◡ccnv 5618 “ cima 5622 –1-1-onto→wf1o 6485 (class class class)co 7352 1oc1o 8384 2oc2o 8385 ↑m cmap 8756 ≈ cen 8872 Fincfn 8875 finSupp cfsupp 9252 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-supp 8097 df-1o 8391 df-2o 8392 df-map 8758 df-en 8876 df-fsupp 9253 |
| This theorem is referenced by: frlmpwfi 43215 |
| Copyright terms: Public domain | W3C validator |