Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwfi2en Structured version   Visualization version   GIF version

Theorem pwfi2en 43214
Description: Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.)
Hypothesis
Ref Expression
pwfi2en.s 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
Assertion
Ref Expression
pwfi2en (𝐴𝑉𝑆 ≈ (𝒫 𝐴 ∩ Fin))
Distinct variable groups:   𝑦,𝐴   𝑦,𝑉
Allowed substitution hint:   𝑆(𝑦)

Proof of Theorem pwfi2en
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwfi2en.s . . 3 𝑆 = {𝑦 ∈ (2om 𝐴) ∣ 𝑦 finSupp ∅}
2 eqid 2733 . . 3 (𝑥𝑆 ↦ (𝑥 “ {1o})) = (𝑥𝑆 ↦ (𝑥 “ {1o}))
31, 2pwfi2f1o 43213 . 2 (𝐴𝑉 → (𝑥𝑆 ↦ (𝑥 “ {1o})):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin))
4 ovex 7385 . . . 4 (2om 𝐴) ∈ V
51, 4rabex2 5281 . . 3 𝑆 ∈ V
65f1oen 8901 . 2 ((𝑥𝑆 ↦ (𝑥 “ {1o})):𝑆1-1-onto→(𝒫 𝐴 ∩ Fin) → 𝑆 ≈ (𝒫 𝐴 ∩ Fin))
73, 6syl 17 1 (𝐴𝑉𝑆 ≈ (𝒫 𝐴 ∩ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  {crab 3396  cin 3897  c0 4282  𝒫 cpw 4549  {csn 4575   class class class wbr 5093  cmpt 5174  ccnv 5618  cima 5622  1-1-ontowf1o 6485  (class class class)co 7352  1oc1o 8384  2oc2o 8385  m cmap 8756  cen 8872  Fincfn 8875   finSupp cfsupp 9252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7355  df-oprab 7356  df-mpo 7357  df-1st 7927  df-2nd 7928  df-supp 8097  df-1o 8391  df-2o 8392  df-map 8758  df-en 8876  df-fsupp 9253
This theorem is referenced by:  frlmpwfi  43215
  Copyright terms: Public domain W3C validator