| Mathbox for Stefan O'Rear |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pwfi2en | Structured version Visualization version GIF version | ||
| Description: Finitely supported indicator functions are equinumerous to finite subsets. MOVABLE (Contributed by Stefan O'Rear, 10-Jul-2015.) (Revised by AV, 14-Jun-2020.) |
| Ref | Expression |
|---|---|
| pwfi2en.s | ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} |
| Ref | Expression |
|---|---|
| pwfi2en | ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwfi2en.s | . . 3 ⊢ 𝑆 = {𝑦 ∈ (2o ↑m 𝐴) ∣ 𝑦 finSupp ∅} | |
| 2 | eqid 2734 | . . 3 ⊢ (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) = (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})) | |
| 3 | 1, 2 | pwfi2f1o 43086 | . 2 ⊢ (𝐴 ∈ 𝑉 → (𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin)) |
| 4 | ovex 7446 | . . . 4 ⊢ (2o ↑m 𝐴) ∈ V | |
| 5 | 1, 4 | rabex2 5321 | . . 3 ⊢ 𝑆 ∈ V |
| 6 | 5 | f1oen 8995 | . 2 ⊢ ((𝑥 ∈ 𝑆 ↦ (◡𝑥 “ {1o})):𝑆–1-1-onto→(𝒫 𝐴 ∩ Fin) → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
| 7 | 3, 6 | syl 17 | 1 ⊢ (𝐴 ∈ 𝑉 → 𝑆 ≈ (𝒫 𝐴 ∩ Fin)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 {crab 3419 ∩ cin 3930 ∅c0 4313 𝒫 cpw 4580 {csn 4606 class class class wbr 5123 ↦ cmpt 5205 ◡ccnv 5664 “ cima 5668 –1-1-onto→wf1o 6540 (class class class)co 7413 1oc1o 8481 2oc2o 8482 ↑m cmap 8848 ≈ cen 8964 Fincfn 8967 finSupp cfsupp 9383 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-supp 8168 df-1o 8488 df-2o 8489 df-map 8850 df-en 8968 df-fsupp 9384 |
| This theorem is referenced by: frlmpwfi 43088 |
| Copyright terms: Public domain | W3C validator |