Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  repwsmet Structured version   Visualization version   GIF version

Theorem repwsmet 35729
Description: The supremum metric on ℝ↑𝐼 is a metric. (Contributed by Jeff Madsen, 15-Sep-2015.)
Hypotheses
Ref Expression
rrnequiv.y 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
rrnequiv.d 𝐷 = (dist‘𝑌)
rrnequiv.1 𝑋 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
repwsmet (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋))

Proof of Theorem repwsmet
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 5611 . . . 4 (𝐼 × {(ℂflds ℝ)}) = (𝑘𝐼 ↦ (ℂflds ℝ))
21oveq2i 7224 . . 3 ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})) = ((Scalar‘ℂfld)Xs(𝑘𝐼 ↦ (ℂflds ℝ)))
3 eqid 2737 . . 3 (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
4 ax-resscn 10786 . . . 4 ℝ ⊆ ℂ
5 eqid 2737 . . . . 5 (ℂflds ℝ) = (ℂflds ℝ)
6 cnfldbas 20367 . . . . 5 ℂ = (Base‘ℂfld)
75, 6ressbas2 16791 . . . 4 (ℝ ⊆ ℂ → ℝ = (Base‘(ℂflds ℝ)))
84, 7ax-mp 5 . . 3 ℝ = (Base‘(ℂflds ℝ))
9 reex 10820 . . . . 5 ℝ ∈ V
10 cnfldds 20373 . . . . . 6 (abs ∘ − ) = (dist‘ℂfld)
115, 10ressds 16917 . . . . 5 (ℝ ∈ V → (abs ∘ − ) = (dist‘(ℂflds ℝ)))
129, 11ax-mp 5 . . . 4 (abs ∘ − ) = (dist‘(ℂflds ℝ))
1312reseq1i 5847 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘(ℂflds ℝ)) ↾ (ℝ × ℝ))
14 eqid 2737 . . 3 (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
15 fvexd 6732 . . 3 (𝐼 ∈ Fin → (Scalar‘ℂfld) ∈ V)
16 id 22 . . 3 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
17 ovex 7246 . . . 4 (ℂflds ℝ) ∈ V
1817a1i 11 . . 3 ((𝐼 ∈ Fin ∧ 𝑘𝐼) → (ℂflds ℝ) ∈ V)
19 eqid 2737 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
2019remet 23687 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
2120a1i 11 . . 3 ((𝐼 ∈ Fin ∧ 𝑘𝐼) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ))
222, 3, 8, 13, 14, 15, 16, 18, 21prdsmet 23268 . 2 (𝐼 ∈ Fin → (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) ∈ (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))))
23 rrnequiv.d . . 3 𝐷 = (dist‘𝑌)
24 rrnequiv.y . . . . . 6 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
25 eqid 2737 . . . . . . . 8 (Scalar‘ℂfld) = (Scalar‘ℂfld)
265, 25resssca 16876 . . . . . . 7 (ℝ ∈ V → (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ)))
279, 26ax-mp 5 . . . . . 6 (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ))
2824, 27pwsval 16991 . . . . 5 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
2917, 28mpan 690 . . . 4 (𝐼 ∈ Fin → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
3029fveq2d 6721 . . 3 (𝐼 ∈ Fin → (dist‘𝑌) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3123, 30syl5eq 2790 . 2 (𝐼 ∈ Fin → 𝐷 = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
32 rrnequiv.1 . . . 4 𝑋 = (ℝ ↑m 𝐼)
3324, 8pwsbas 16992 . . . . . 6 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → (ℝ ↑m 𝐼) = (Base‘𝑌))
3417, 33mpan 690 . . . . 5 (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘𝑌))
3529fveq2d 6721 . . . . 5 (𝐼 ∈ Fin → (Base‘𝑌) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3634, 35eqtrd 2777 . . . 4 (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3732, 36syl5eq 2790 . . 3 (𝐼 ∈ Fin → 𝑋 = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3837fveq2d 6721 . 2 (𝐼 ∈ Fin → (Met‘𝑋) = (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))))
3922, 31, 383eltr4d 2853 1 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  wss 3866  {csn 4541  cmpt 5135   × cxp 5549  cres 5553  ccom 5555  cfv 6380  (class class class)co 7213  m cmap 8508  Fincfn 8626  cc 10727  cr 10728  cmin 11062  abscabs 14797  Basecbs 16760  s cress 16784  Scalarcsca 16805  distcds 16811  Xscprds 16950  s cpws 16951  Metcmet 20349  fldccnfld 20363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-icc 12942  df-fz 13096  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-struct 16700  df-sets 16717  df-slot 16735  df-ndx 16745  df-base 16761  df-ress 16785  df-plusg 16815  df-mulr 16816  df-starv 16817  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-unif 16825  df-hom 16826  df-cco 16827  df-prds 16952  df-pws 16954  df-xmet 20356  df-met 20357  df-cnfld 20364
This theorem is referenced by:  rrnequiv  35730  rrntotbnd  35731
  Copyright terms: Public domain W3C validator