| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > repwsmet | Structured version Visualization version GIF version | ||
| Description: The supremum metric on ℝ↑𝐼 is a metric. (Contributed by Jeff Madsen, 15-Sep-2015.) |
| Ref | Expression |
|---|---|
| rrnequiv.y | ⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) |
| rrnequiv.d | ⊢ 𝐷 = (dist‘𝑌) |
| rrnequiv.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| repwsmet | ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5681 | . . . 4 ⊢ (𝐼 × {(ℂfld ↾s ℝ)}) = (𝑘 ∈ 𝐼 ↦ (ℂfld ↾s ℝ)) | |
| 2 | 1 | oveq2i 7360 | . . 3 ⊢ ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})) = ((Scalar‘ℂfld)Xs(𝑘 ∈ 𝐼 ↦ (ℂfld ↾s ℝ))) |
| 3 | eqid 2729 | . . 3 ⊢ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) | |
| 4 | ax-resscn 11066 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 5 | eqid 2729 | . . . . 5 ⊢ (ℂfld ↾s ℝ) = (ℂfld ↾s ℝ) | |
| 6 | cnfldbas 21265 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | 5, 6 | ressbas2 17149 | . . . 4 ⊢ (ℝ ⊆ ℂ → ℝ = (Base‘(ℂfld ↾s ℝ))) |
| 8 | 4, 7 | ax-mp 5 | . . 3 ⊢ ℝ = (Base‘(ℂfld ↾s ℝ)) |
| 9 | reex 11100 | . . . . 5 ⊢ ℝ ∈ V | |
| 10 | cnfldds 21273 | . . . . . 6 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
| 11 | 5, 10 | ressds 17314 | . . . . 5 ⊢ (ℝ ∈ V → (abs ∘ − ) = (dist‘(ℂfld ↾s ℝ))) |
| 12 | 9, 11 | ax-mp 5 | . . . 4 ⊢ (abs ∘ − ) = (dist‘(ℂfld ↾s ℝ)) |
| 13 | 12 | reseq1i 5926 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘(ℂfld ↾s ℝ)) ↾ (ℝ × ℝ)) |
| 14 | eqid 2729 | . . 3 ⊢ (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) | |
| 15 | fvexd 6837 | . . 3 ⊢ (𝐼 ∈ Fin → (Scalar‘ℂfld) ∈ V) | |
| 16 | id 22 | . . 3 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
| 17 | ovex 7382 | . . . 4 ⊢ (ℂfld ↾s ℝ) ∈ V | |
| 18 | 17 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼) → (ℂfld ↾s ℝ) ∈ V) |
| 19 | eqid 2729 | . . . . 5 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 20 | 19 | remet 24676 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) |
| 21 | 20 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)) |
| 22 | 2, 3, 8, 13, 14, 15, 16, 18, 21 | prdsmet 24256 | . 2 ⊢ (𝐼 ∈ Fin → (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) ∈ (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))))) |
| 23 | rrnequiv.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
| 24 | rrnequiv.y | . . . . . 6 ⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) | |
| 25 | eqid 2729 | . . . . . . . 8 ⊢ (Scalar‘ℂfld) = (Scalar‘ℂfld) | |
| 26 | 5, 25 | resssca 17247 | . . . . . . 7 ⊢ (ℝ ∈ V → (Scalar‘ℂfld) = (Scalar‘(ℂfld ↾s ℝ))) |
| 27 | 9, 26 | ax-mp 5 | . . . . . 6 ⊢ (Scalar‘ℂfld) = (Scalar‘(ℂfld ↾s ℝ)) |
| 28 | 24, 27 | pwsval 17390 | . . . . 5 ⊢ (((ℂfld ↾s ℝ) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) |
| 29 | 17, 28 | mpan 690 | . . . 4 ⊢ (𝐼 ∈ Fin → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) |
| 30 | 29 | fveq2d 6826 | . . 3 ⊢ (𝐼 ∈ Fin → (dist‘𝑌) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 31 | 23, 30 | eqtrid 2776 | . 2 ⊢ (𝐼 ∈ Fin → 𝐷 = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 32 | rrnequiv.1 | . . . 4 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
| 33 | 24, 8 | pwsbas 17391 | . . . . . 6 ⊢ (((ℂfld ↾s ℝ) ∈ V ∧ 𝐼 ∈ Fin) → (ℝ ↑m 𝐼) = (Base‘𝑌)) |
| 34 | 17, 33 | mpan 690 | . . . . 5 ⊢ (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘𝑌)) |
| 35 | 29 | fveq2d 6826 | . . . . 5 ⊢ (𝐼 ∈ Fin → (Base‘𝑌) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 36 | 34, 35 | eqtrd 2764 | . . . 4 ⊢ (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 37 | 32, 36 | eqtrid 2776 | . . 3 ⊢ (𝐼 ∈ Fin → 𝑋 = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 38 | 37 | fveq2d 6826 | . 2 ⊢ (𝐼 ∈ Fin → (Met‘𝑋) = (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))))) |
| 39 | 22, 31, 38 | 3eltr4d 2843 | 1 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 ⊆ wss 3903 {csn 4577 ↦ cmpt 5173 × cxp 5617 ↾ cres 5621 ∘ ccom 5623 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 Fincfn 8872 ℂcc 11007 ℝcr 11008 − cmin 11347 abscabs 15141 Basecbs 17120 ↾s cress 17141 Scalarcsca 17164 distcds 17170 Xscprds 17349 ↑s cpws 17350 Metcmet 21247 ℂfldccnfld 21261 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-xneg 13014 df-xadd 13015 df-xmul 13016 df-icc 13255 df-fz 13411 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-prds 17351 df-pws 17353 df-xmet 21254 df-met 21255 df-cnfld 21262 |
| This theorem is referenced by: rrnequiv 37825 rrntotbnd 37826 |
| Copyright terms: Public domain | W3C validator |