| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > repwsmet | Structured version Visualization version GIF version | ||
| Description: The supremum metric on ℝ↑𝐼 is a metric. (Contributed by Jeff Madsen, 15-Sep-2015.) |
| Ref | Expression |
|---|---|
| rrnequiv.y | ⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) |
| rrnequiv.d | ⊢ 𝐷 = (dist‘𝑌) |
| rrnequiv.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| repwsmet | ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5693 | . . . 4 ⊢ (𝐼 × {(ℂfld ↾s ℝ)}) = (𝑘 ∈ 𝐼 ↦ (ℂfld ↾s ℝ)) | |
| 2 | 1 | oveq2i 7380 | . . 3 ⊢ ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})) = ((Scalar‘ℂfld)Xs(𝑘 ∈ 𝐼 ↦ (ℂfld ↾s ℝ))) |
| 3 | eqid 2729 | . . 3 ⊢ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) | |
| 4 | ax-resscn 11101 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 5 | eqid 2729 | . . . . 5 ⊢ (ℂfld ↾s ℝ) = (ℂfld ↾s ℝ) | |
| 6 | cnfldbas 21300 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | 5, 6 | ressbas2 17184 | . . . 4 ⊢ (ℝ ⊆ ℂ → ℝ = (Base‘(ℂfld ↾s ℝ))) |
| 8 | 4, 7 | ax-mp 5 | . . 3 ⊢ ℝ = (Base‘(ℂfld ↾s ℝ)) |
| 9 | reex 11135 | . . . . 5 ⊢ ℝ ∈ V | |
| 10 | cnfldds 21308 | . . . . . 6 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
| 11 | 5, 10 | ressds 17349 | . . . . 5 ⊢ (ℝ ∈ V → (abs ∘ − ) = (dist‘(ℂfld ↾s ℝ))) |
| 12 | 9, 11 | ax-mp 5 | . . . 4 ⊢ (abs ∘ − ) = (dist‘(ℂfld ↾s ℝ)) |
| 13 | 12 | reseq1i 5935 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘(ℂfld ↾s ℝ)) ↾ (ℝ × ℝ)) |
| 14 | eqid 2729 | . . 3 ⊢ (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) | |
| 15 | fvexd 6855 | . . 3 ⊢ (𝐼 ∈ Fin → (Scalar‘ℂfld) ∈ V) | |
| 16 | id 22 | . . 3 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
| 17 | ovex 7402 | . . . 4 ⊢ (ℂfld ↾s ℝ) ∈ V | |
| 18 | 17 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼) → (ℂfld ↾s ℝ) ∈ V) |
| 19 | eqid 2729 | . . . . 5 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 20 | 19 | remet 24711 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) |
| 21 | 20 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)) |
| 22 | 2, 3, 8, 13, 14, 15, 16, 18, 21 | prdsmet 24291 | . 2 ⊢ (𝐼 ∈ Fin → (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) ∈ (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))))) |
| 23 | rrnequiv.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
| 24 | rrnequiv.y | . . . . . 6 ⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) | |
| 25 | eqid 2729 | . . . . . . . 8 ⊢ (Scalar‘ℂfld) = (Scalar‘ℂfld) | |
| 26 | 5, 25 | resssca 17282 | . . . . . . 7 ⊢ (ℝ ∈ V → (Scalar‘ℂfld) = (Scalar‘(ℂfld ↾s ℝ))) |
| 27 | 9, 26 | ax-mp 5 | . . . . . 6 ⊢ (Scalar‘ℂfld) = (Scalar‘(ℂfld ↾s ℝ)) |
| 28 | 24, 27 | pwsval 17425 | . . . . 5 ⊢ (((ℂfld ↾s ℝ) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) |
| 29 | 17, 28 | mpan 690 | . . . 4 ⊢ (𝐼 ∈ Fin → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) |
| 30 | 29 | fveq2d 6844 | . . 3 ⊢ (𝐼 ∈ Fin → (dist‘𝑌) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 31 | 23, 30 | eqtrid 2776 | . 2 ⊢ (𝐼 ∈ Fin → 𝐷 = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 32 | rrnequiv.1 | . . . 4 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
| 33 | 24, 8 | pwsbas 17426 | . . . . . 6 ⊢ (((ℂfld ↾s ℝ) ∈ V ∧ 𝐼 ∈ Fin) → (ℝ ↑m 𝐼) = (Base‘𝑌)) |
| 34 | 17, 33 | mpan 690 | . . . . 5 ⊢ (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘𝑌)) |
| 35 | 29 | fveq2d 6844 | . . . . 5 ⊢ (𝐼 ∈ Fin → (Base‘𝑌) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 36 | 34, 35 | eqtrd 2764 | . . . 4 ⊢ (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 37 | 32, 36 | eqtrid 2776 | . . 3 ⊢ (𝐼 ∈ Fin → 𝑋 = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 38 | 37 | fveq2d 6844 | . 2 ⊢ (𝐼 ∈ Fin → (Met‘𝑋) = (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))))) |
| 39 | 22, 31, 38 | 3eltr4d 2843 | 1 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 {csn 4585 ↦ cmpt 5183 × cxp 5629 ↾ cres 5633 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Fincfn 8895 ℂcc 11042 ℝcr 11043 − cmin 11381 abscabs 15176 Basecbs 17155 ↾s cress 17176 Scalarcsca 17199 distcds 17205 Xscprds 17384 ↑s cpws 17385 Metcmet 21282 ℂfldccnfld 21296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-xneg 13048 df-xadd 13049 df-xmul 13050 df-icc 13289 df-fz 13445 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-prds 17386 df-pws 17388 df-xmet 21289 df-met 21290 df-cnfld 21297 |
| This theorem is referenced by: rrnequiv 37822 rrntotbnd 37823 |
| Copyright terms: Public domain | W3C validator |