Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  repwsmet Structured version   Visualization version   GIF version

Theorem repwsmet 37828
Description: The supremum metric on ℝ↑𝐼 is a metric. (Contributed by Jeff Madsen, 15-Sep-2015.)
Hypotheses
Ref Expression
rrnequiv.y 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
rrnequiv.d 𝐷 = (dist‘𝑌)
rrnequiv.1 𝑋 = (ℝ ↑m 𝐼)
Assertion
Ref Expression
repwsmet (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋))

Proof of Theorem repwsmet
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 fconstmpt 5700 . . . 4 (𝐼 × {(ℂflds ℝ)}) = (𝑘𝐼 ↦ (ℂflds ℝ))
21oveq2i 7398 . . 3 ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})) = ((Scalar‘ℂfld)Xs(𝑘𝐼 ↦ (ℂflds ℝ)))
3 eqid 2729 . . 3 (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
4 ax-resscn 11125 . . . 4 ℝ ⊆ ℂ
5 eqid 2729 . . . . 5 (ℂflds ℝ) = (ℂflds ℝ)
6 cnfldbas 21268 . . . . 5 ℂ = (Base‘ℂfld)
75, 6ressbas2 17208 . . . 4 (ℝ ⊆ ℂ → ℝ = (Base‘(ℂflds ℝ)))
84, 7ax-mp 5 . . 3 ℝ = (Base‘(ℂflds ℝ))
9 reex 11159 . . . . 5 ℝ ∈ V
10 cnfldds 21276 . . . . . 6 (abs ∘ − ) = (dist‘ℂfld)
115, 10ressds 17373 . . . . 5 (ℝ ∈ V → (abs ∘ − ) = (dist‘(ℂflds ℝ)))
129, 11ax-mp 5 . . . 4 (abs ∘ − ) = (dist‘(ℂflds ℝ))
1312reseq1i 5946 . . 3 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘(ℂflds ℝ)) ↾ (ℝ × ℝ))
14 eqid 2729 . . 3 (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
15 fvexd 6873 . . 3 (𝐼 ∈ Fin → (Scalar‘ℂfld) ∈ V)
16 id 22 . . 3 (𝐼 ∈ Fin → 𝐼 ∈ Fin)
17 ovex 7420 . . . 4 (ℂflds ℝ) ∈ V
1817a1i 11 . . 3 ((𝐼 ∈ Fin ∧ 𝑘𝐼) → (ℂflds ℝ) ∈ V)
19 eqid 2729 . . . . 5 ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ))
2019remet 24678 . . . 4 ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)
2120a1i 11 . . 3 ((𝐼 ∈ Fin ∧ 𝑘𝐼) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ))
222, 3, 8, 13, 14, 15, 16, 18, 21prdsmet 24258 . 2 (𝐼 ∈ Fin → (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))) ∈ (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))))
23 rrnequiv.d . . 3 𝐷 = (dist‘𝑌)
24 rrnequiv.y . . . . . 6 𝑌 = ((ℂflds ℝ) ↑s 𝐼)
25 eqid 2729 . . . . . . . 8 (Scalar‘ℂfld) = (Scalar‘ℂfld)
265, 25resssca 17306 . . . . . . 7 (ℝ ∈ V → (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ)))
279, 26ax-mp 5 . . . . . 6 (Scalar‘ℂfld) = (Scalar‘(ℂflds ℝ))
2824, 27pwsval 17449 . . . . 5 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
2917, 28mpan 690 . . . 4 (𝐼 ∈ Fin → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))
3029fveq2d 6862 . . 3 (𝐼 ∈ Fin → (dist‘𝑌) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3123, 30eqtrid 2776 . 2 (𝐼 ∈ Fin → 𝐷 = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
32 rrnequiv.1 . . . 4 𝑋 = (ℝ ↑m 𝐼)
3324, 8pwsbas 17450 . . . . . 6 (((ℂflds ℝ) ∈ V ∧ 𝐼 ∈ Fin) → (ℝ ↑m 𝐼) = (Base‘𝑌))
3417, 33mpan 690 . . . . 5 (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘𝑌))
3529fveq2d 6862 . . . . 5 (𝐼 ∈ Fin → (Base‘𝑌) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3634, 35eqtrd 2764 . . . 4 (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3732, 36eqtrid 2776 . . 3 (𝐼 ∈ Fin → 𝑋 = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)}))))
3837fveq2d 6862 . 2 (𝐼 ∈ Fin → (Met‘𝑋) = (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂflds ℝ)})))))
3922, 31, 383eltr4d 2843 1 (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  wss 3914  {csn 4589  cmpt 5188   × cxp 5636  cres 5640  ccom 5642  cfv 6511  (class class class)co 7387  m cmap 8799  Fincfn 8918  cc 11066  cr 11067  cmin 11405  abscabs 15200  Basecbs 17179  s cress 17200  Scalarcsca 17223  distcds 17229  Xscprds 17408  s cpws 17409  Metcmet 21250  fldccnfld 21264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-icc 13313  df-fz 13469  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-prds 17410  df-pws 17412  df-xmet 21257  df-met 21258  df-cnfld 21265
This theorem is referenced by:  rrnequiv  37829  rrntotbnd  37830
  Copyright terms: Public domain W3C validator