| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > repwsmet | Structured version Visualization version GIF version | ||
| Description: The supremum metric on ℝ↑𝐼 is a metric. (Contributed by Jeff Madsen, 15-Sep-2015.) |
| Ref | Expression |
|---|---|
| rrnequiv.y | ⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) |
| rrnequiv.d | ⊢ 𝐷 = (dist‘𝑌) |
| rrnequiv.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
| Ref | Expression |
|---|---|
| repwsmet | ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fconstmpt 5716 | . . . 4 ⊢ (𝐼 × {(ℂfld ↾s ℝ)}) = (𝑘 ∈ 𝐼 ↦ (ℂfld ↾s ℝ)) | |
| 2 | 1 | oveq2i 7416 | . . 3 ⊢ ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})) = ((Scalar‘ℂfld)Xs(𝑘 ∈ 𝐼 ↦ (ℂfld ↾s ℝ))) |
| 3 | eqid 2735 | . . 3 ⊢ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) | |
| 4 | ax-resscn 11186 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 5 | eqid 2735 | . . . . 5 ⊢ (ℂfld ↾s ℝ) = (ℂfld ↾s ℝ) | |
| 6 | cnfldbas 21319 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
| 7 | 5, 6 | ressbas2 17259 | . . . 4 ⊢ (ℝ ⊆ ℂ → ℝ = (Base‘(ℂfld ↾s ℝ))) |
| 8 | 4, 7 | ax-mp 5 | . . 3 ⊢ ℝ = (Base‘(ℂfld ↾s ℝ)) |
| 9 | reex 11220 | . . . . 5 ⊢ ℝ ∈ V | |
| 10 | cnfldds 21327 | . . . . . 6 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
| 11 | 5, 10 | ressds 17424 | . . . . 5 ⊢ (ℝ ∈ V → (abs ∘ − ) = (dist‘(ℂfld ↾s ℝ))) |
| 12 | 9, 11 | ax-mp 5 | . . . 4 ⊢ (abs ∘ − ) = (dist‘(ℂfld ↾s ℝ)) |
| 13 | 12 | reseq1i 5962 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘(ℂfld ↾s ℝ)) ↾ (ℝ × ℝ)) |
| 14 | eqid 2735 | . . 3 ⊢ (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) | |
| 15 | fvexd 6891 | . . 3 ⊢ (𝐼 ∈ Fin → (Scalar‘ℂfld) ∈ V) | |
| 16 | id 22 | . . 3 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
| 17 | ovex 7438 | . . . 4 ⊢ (ℂfld ↾s ℝ) ∈ V | |
| 18 | 17 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼) → (ℂfld ↾s ℝ) ∈ V) |
| 19 | eqid 2735 | . . . . 5 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
| 20 | 19 | remet 24729 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) |
| 21 | 20 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)) |
| 22 | 2, 3, 8, 13, 14, 15, 16, 18, 21 | prdsmet 24309 | . 2 ⊢ (𝐼 ∈ Fin → (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) ∈ (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))))) |
| 23 | rrnequiv.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
| 24 | rrnequiv.y | . . . . . 6 ⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) | |
| 25 | eqid 2735 | . . . . . . . 8 ⊢ (Scalar‘ℂfld) = (Scalar‘ℂfld) | |
| 26 | 5, 25 | resssca 17357 | . . . . . . 7 ⊢ (ℝ ∈ V → (Scalar‘ℂfld) = (Scalar‘(ℂfld ↾s ℝ))) |
| 27 | 9, 26 | ax-mp 5 | . . . . . 6 ⊢ (Scalar‘ℂfld) = (Scalar‘(ℂfld ↾s ℝ)) |
| 28 | 24, 27 | pwsval 17500 | . . . . 5 ⊢ (((ℂfld ↾s ℝ) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) |
| 29 | 17, 28 | mpan 690 | . . . 4 ⊢ (𝐼 ∈ Fin → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) |
| 30 | 29 | fveq2d 6880 | . . 3 ⊢ (𝐼 ∈ Fin → (dist‘𝑌) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 31 | 23, 30 | eqtrid 2782 | . 2 ⊢ (𝐼 ∈ Fin → 𝐷 = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 32 | rrnequiv.1 | . . . 4 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
| 33 | 24, 8 | pwsbas 17501 | . . . . . 6 ⊢ (((ℂfld ↾s ℝ) ∈ V ∧ 𝐼 ∈ Fin) → (ℝ ↑m 𝐼) = (Base‘𝑌)) |
| 34 | 17, 33 | mpan 690 | . . . . 5 ⊢ (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘𝑌)) |
| 35 | 29 | fveq2d 6880 | . . . . 5 ⊢ (𝐼 ∈ Fin → (Base‘𝑌) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 36 | 34, 35 | eqtrd 2770 | . . . 4 ⊢ (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 37 | 32, 36 | eqtrid 2782 | . . 3 ⊢ (𝐼 ∈ Fin → 𝑋 = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
| 38 | 37 | fveq2d 6880 | . 2 ⊢ (𝐼 ∈ Fin → (Met‘𝑋) = (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))))) |
| 39 | 22, 31, 38 | 3eltr4d 2849 | 1 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 {csn 4601 ↦ cmpt 5201 × cxp 5652 ↾ cres 5656 ∘ ccom 5658 ‘cfv 6531 (class class class)co 7405 ↑m cmap 8840 Fincfn 8959 ℂcc 11127 ℝcr 11128 − cmin 11466 abscabs 15253 Basecbs 17228 ↾s cress 17251 Scalarcsca 17274 distcds 17280 Xscprds 17459 ↑s cpws 17460 Metcmet 21301 ℂfldccnfld 21315 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-er 8719 df-map 8842 df-ixp 8912 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-icc 13369 df-fz 13525 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-struct 17166 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-mulr 17285 df-starv 17286 df-sca 17287 df-vsca 17288 df-ip 17289 df-tset 17290 df-ple 17291 df-ds 17293 df-unif 17294 df-hom 17295 df-cco 17296 df-prds 17461 df-pws 17463 df-xmet 21308 df-met 21309 df-cnfld 21316 |
| This theorem is referenced by: rrnequiv 37859 rrntotbnd 37860 |
| Copyright terms: Public domain | W3C validator |