Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > repwsmet | Structured version Visualization version GIF version |
Description: The supremum metric on ℝ↑𝐼 is a metric. (Contributed by Jeff Madsen, 15-Sep-2015.) |
Ref | Expression |
---|---|
rrnequiv.y | ⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) |
rrnequiv.d | ⊢ 𝐷 = (dist‘𝑌) |
rrnequiv.1 | ⊢ 𝑋 = (ℝ ↑m 𝐼) |
Ref | Expression |
---|---|
repwsmet | ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fconstmpt 5640 | . . . 4 ⊢ (𝐼 × {(ℂfld ↾s ℝ)}) = (𝑘 ∈ 𝐼 ↦ (ℂfld ↾s ℝ)) | |
2 | 1 | oveq2i 7266 | . . 3 ⊢ ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})) = ((Scalar‘ℂfld)Xs(𝑘 ∈ 𝐼 ↦ (ℂfld ↾s ℝ))) |
3 | eqid 2738 | . . 3 ⊢ (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) | |
4 | ax-resscn 10859 | . . . 4 ⊢ ℝ ⊆ ℂ | |
5 | eqid 2738 | . . . . 5 ⊢ (ℂfld ↾s ℝ) = (ℂfld ↾s ℝ) | |
6 | cnfldbas 20514 | . . . . 5 ⊢ ℂ = (Base‘ℂfld) | |
7 | 5, 6 | ressbas2 16875 | . . . 4 ⊢ (ℝ ⊆ ℂ → ℝ = (Base‘(ℂfld ↾s ℝ))) |
8 | 4, 7 | ax-mp 5 | . . 3 ⊢ ℝ = (Base‘(ℂfld ↾s ℝ)) |
9 | reex 10893 | . . . . 5 ⊢ ℝ ∈ V | |
10 | cnfldds 20520 | . . . . . 6 ⊢ (abs ∘ − ) = (dist‘ℂfld) | |
11 | 5, 10 | ressds 17039 | . . . . 5 ⊢ (ℝ ∈ V → (abs ∘ − ) = (dist‘(ℂfld ↾s ℝ))) |
12 | 9, 11 | ax-mp 5 | . . . 4 ⊢ (abs ∘ − ) = (dist‘(ℂfld ↾s ℝ)) |
13 | 12 | reseq1i 5876 | . . 3 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((dist‘(ℂfld ↾s ℝ)) ↾ (ℝ × ℝ)) |
14 | eqid 2738 | . . 3 ⊢ (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) | |
15 | fvexd 6771 | . . 3 ⊢ (𝐼 ∈ Fin → (Scalar‘ℂfld) ∈ V) | |
16 | id 22 | . . 3 ⊢ (𝐼 ∈ Fin → 𝐼 ∈ Fin) | |
17 | ovex 7288 | . . . 4 ⊢ (ℂfld ↾s ℝ) ∈ V | |
18 | 17 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼) → (ℂfld ↾s ℝ) ∈ V) |
19 | eqid 2738 | . . . . 5 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) = ((abs ∘ − ) ↾ (ℝ × ℝ)) | |
20 | 19 | remet 23859 | . . . 4 ⊢ ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ) |
21 | 20 | a1i 11 | . . 3 ⊢ ((𝐼 ∈ Fin ∧ 𝑘 ∈ 𝐼) → ((abs ∘ − ) ↾ (ℝ × ℝ)) ∈ (Met‘ℝ)) |
22 | 2, 3, 8, 13, 14, 15, 16, 18, 21 | prdsmet 23431 | . 2 ⊢ (𝐼 ∈ Fin → (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) ∈ (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))))) |
23 | rrnequiv.d | . . 3 ⊢ 𝐷 = (dist‘𝑌) | |
24 | rrnequiv.y | . . . . . 6 ⊢ 𝑌 = ((ℂfld ↾s ℝ) ↑s 𝐼) | |
25 | eqid 2738 | . . . . . . . 8 ⊢ (Scalar‘ℂfld) = (Scalar‘ℂfld) | |
26 | 5, 25 | resssca 16978 | . . . . . . 7 ⊢ (ℝ ∈ V → (Scalar‘ℂfld) = (Scalar‘(ℂfld ↾s ℝ))) |
27 | 9, 26 | ax-mp 5 | . . . . . 6 ⊢ (Scalar‘ℂfld) = (Scalar‘(ℂfld ↾s ℝ)) |
28 | 24, 27 | pwsval 17114 | . . . . 5 ⊢ (((ℂfld ↾s ℝ) ∈ V ∧ 𝐼 ∈ Fin) → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) |
29 | 17, 28 | mpan 686 | . . . 4 ⊢ (𝐼 ∈ Fin → 𝑌 = ((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))) |
30 | 29 | fveq2d 6760 | . . 3 ⊢ (𝐼 ∈ Fin → (dist‘𝑌) = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
31 | 23, 30 | syl5eq 2791 | . 2 ⊢ (𝐼 ∈ Fin → 𝐷 = (dist‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
32 | rrnequiv.1 | . . . 4 ⊢ 𝑋 = (ℝ ↑m 𝐼) | |
33 | 24, 8 | pwsbas 17115 | . . . . . 6 ⊢ (((ℂfld ↾s ℝ) ∈ V ∧ 𝐼 ∈ Fin) → (ℝ ↑m 𝐼) = (Base‘𝑌)) |
34 | 17, 33 | mpan 686 | . . . . 5 ⊢ (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘𝑌)) |
35 | 29 | fveq2d 6760 | . . . . 5 ⊢ (𝐼 ∈ Fin → (Base‘𝑌) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
36 | 34, 35 | eqtrd 2778 | . . . 4 ⊢ (𝐼 ∈ Fin → (ℝ ↑m 𝐼) = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
37 | 32, 36 | syl5eq 2791 | . . 3 ⊢ (𝐼 ∈ Fin → 𝑋 = (Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)})))) |
38 | 37 | fveq2d 6760 | . 2 ⊢ (𝐼 ∈ Fin → (Met‘𝑋) = (Met‘(Base‘((Scalar‘ℂfld)Xs(𝐼 × {(ℂfld ↾s ℝ)}))))) |
39 | 22, 31, 38 | 3eltr4d 2854 | 1 ⊢ (𝐼 ∈ Fin → 𝐷 ∈ (Met‘𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {csn 4558 ↦ cmpt 5153 × cxp 5578 ↾ cres 5582 ∘ ccom 5584 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Fincfn 8691 ℂcc 10800 ℝcr 10801 − cmin 11135 abscabs 14873 Basecbs 16840 ↾s cress 16867 Scalarcsca 16891 distcds 16897 Xscprds 17073 ↑s cpws 17074 Metcmet 20496 ℂfldccnfld 20510 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-icc 13015 df-fz 13169 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-prds 17075 df-pws 17077 df-xmet 20503 df-met 20504 df-cnfld 20511 |
This theorem is referenced by: rrnequiv 35920 rrntotbnd 35921 |
Copyright terms: Public domain | W3C validator |