Step | Hyp | Ref
| Expression |
1 | | fconstmpt 5738 |
. . . 4
β’ (πΌ Γ {(βfld
βΎs β)}) = (π β πΌ β¦ (βfld
βΎs β)) |
2 | 1 | oveq2i 7423 |
. . 3
β’
((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)})) = ((Scalarββfld)Xs(π β πΌ β¦ (βfld
βΎs β))) |
3 | | eqid 2731 |
. . 3
β’
(Baseβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)}))) =
(Baseβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)}))) |
4 | | ax-resscn 11171 |
. . . 4
β’ β
β β |
5 | | eqid 2731 |
. . . . 5
β’
(βfld βΎs β) =
(βfld βΎs β) |
6 | | cnfldbas 21149 |
. . . . 5
β’ β =
(Baseββfld) |
7 | 5, 6 | ressbas2 17187 |
. . . 4
β’ (β
β β β β = (Baseβ(βfld
βΎs β))) |
8 | 4, 7 | ax-mp 5 |
. . 3
β’ β =
(Baseβ(βfld βΎs
β)) |
9 | | reex 11205 |
. . . . 5
β’ β
β V |
10 | | cnfldds 21155 |
. . . . . 6
β’ (abs
β β ) = (distββfld) |
11 | 5, 10 | ressds 17360 |
. . . . 5
β’ (β
β V β (abs β β ) = (distβ(βfld
βΎs β))) |
12 | 9, 11 | ax-mp 5 |
. . . 4
β’ (abs
β β ) = (distβ(βfld βΎs
β)) |
13 | 12 | reseq1i 5977 |
. . 3
β’ ((abs
β β ) βΎ (β Γ β)) =
((distβ(βfld βΎs β)) βΎ
(β Γ β)) |
14 | | eqid 2731 |
. . 3
β’
(distβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)}))) =
(distβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)}))) |
15 | | fvexd 6906 |
. . 3
β’ (πΌ β Fin β
(Scalarββfld) β V) |
16 | | id 22 |
. . 3
β’ (πΌ β Fin β πΌ β Fin) |
17 | | ovex 7445 |
. . . 4
β’
(βfld βΎs β) β
V |
18 | 17 | a1i 11 |
. . 3
β’ ((πΌ β Fin β§ π β πΌ) β (βfld
βΎs β) β V) |
19 | | eqid 2731 |
. . . . 5
β’ ((abs
β β ) βΎ (β Γ β)) = ((abs β β )
βΎ (β Γ β)) |
20 | 19 | remet 24527 |
. . . 4
β’ ((abs
β β ) βΎ (β Γ β)) β
(Metββ) |
21 | 20 | a1i 11 |
. . 3
β’ ((πΌ β Fin β§ π β πΌ) β ((abs β β ) βΎ
(β Γ β)) β (Metββ)) |
22 | 2, 3, 8, 13, 14, 15, 16, 18, 21 | prdsmet 24097 |
. 2
β’ (πΌ β Fin β
(distβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)}))) β
(Metβ(Baseβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)}))))) |
23 | | rrnequiv.d |
. . 3
β’ π· = (distβπ) |
24 | | rrnequiv.y |
. . . . . 6
β’ π = ((βfld
βΎs β) βs πΌ) |
25 | | eqid 2731 |
. . . . . . . 8
β’
(Scalarββfld) =
(Scalarββfld) |
26 | 5, 25 | resssca 17293 |
. . . . . . 7
β’ (β
β V β (Scalarββfld) =
(Scalarβ(βfld βΎs
β))) |
27 | 9, 26 | ax-mp 5 |
. . . . . 6
β’
(Scalarββfld) =
(Scalarβ(βfld βΎs
β)) |
28 | 24, 27 | pwsval 17437 |
. . . . 5
β’
(((βfld βΎs β) β V β§
πΌ β Fin) β π =
((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)}))) |
29 | 17, 28 | mpan 687 |
. . . 4
β’ (πΌ β Fin β π =
((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)}))) |
30 | 29 | fveq2d 6895 |
. . 3
β’ (πΌ β Fin β
(distβπ) =
(distβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)})))) |
31 | 23, 30 | eqtrid 2783 |
. 2
β’ (πΌ β Fin β π· =
(distβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)})))) |
32 | | rrnequiv.1 |
. . . 4
β’ π = (β βm
πΌ) |
33 | 24, 8 | pwsbas 17438 |
. . . . . 6
β’
(((βfld βΎs β) β V β§
πΌ β Fin) β
(β βm πΌ) = (Baseβπ)) |
34 | 17, 33 | mpan 687 |
. . . . 5
β’ (πΌ β Fin β (β
βm πΌ) =
(Baseβπ)) |
35 | 29 | fveq2d 6895 |
. . . . 5
β’ (πΌ β Fin β
(Baseβπ) =
(Baseβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)})))) |
36 | 34, 35 | eqtrd 2771 |
. . . 4
β’ (πΌ β Fin β (β
βm πΌ) =
(Baseβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)})))) |
37 | 32, 36 | eqtrid 2783 |
. . 3
β’ (πΌ β Fin β π =
(Baseβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)})))) |
38 | 37 | fveq2d 6895 |
. 2
β’ (πΌ β Fin β
(Metβπ) =
(Metβ(Baseβ((Scalarββfld)Xs(πΌ Γ {(βfld
βΎs β)}))))) |
39 | 22, 31, 38 | 3eltr4d 2847 |
1
β’ (πΌ β Fin β π· β (Metβπ)) |