| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwspjmhm | Structured version Visualization version GIF version | ||
| Description: A projection from a structure power of a monoid to the monoid itself is a monoid homomorphism. (Contributed by Mario Carneiro, 15-Jun-2015.) |
| Ref | Expression |
|---|---|
| pwspjmhm.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwspjmhm.b | ⊢ 𝐵 = (Base‘𝑌) |
| Ref | Expression |
|---|---|
| pwspjmhm | ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom 𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 2 | eqid 2730 | . . 3 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 3 | simp2 1137 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐼 ∈ 𝑉) | |
| 4 | fvexd 6876 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (Scalar‘𝑅) ∈ V) | |
| 5 | fconst6g 6752 | . . . 4 ⊢ (𝑅 ∈ Mnd → (𝐼 × {𝑅}):𝐼⟶Mnd) | |
| 6 | 5 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝐼 × {𝑅}):𝐼⟶Mnd) |
| 7 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐴 ∈ 𝐼) | |
| 8 | 1, 2, 3, 4, 6, 7 | prdspjmhm 18763 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑥 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ↦ (𝑥‘𝐴)) ∈ (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) MndHom ((𝐼 × {𝑅})‘𝐴))) |
| 9 | pwspjmhm.b | . . . 4 ⊢ 𝐵 = (Base‘𝑌) | |
| 10 | pwspjmhm.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 11 | eqid 2730 | . . . . . . 7 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 12 | 10, 11 | pwsval 17456 | . . . . . 6 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 13 | 12 | 3adant3 1132 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 14 | 13 | fveq2d 6865 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 15 | 9, 14 | eqtrid 2777 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 16 | 15 | mpteq1d 5200 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) = (𝑥 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ↦ (𝑥‘𝐴))) |
| 17 | fvconst2g 7179 | . . . . 5 ⊢ ((𝑅 ∈ Mnd ∧ 𝐴 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝐴) = 𝑅) | |
| 18 | 17 | 3adant2 1131 | . . . 4 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝐴) = 𝑅) |
| 19 | 18 | eqcomd 2736 | . . 3 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → 𝑅 = ((𝐼 × {𝑅})‘𝐴)) |
| 20 | 13, 19 | oveq12d 7408 | . 2 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑌 MndHom 𝑅) = (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) MndHom ((𝐼 × {𝑅})‘𝐴))) |
| 21 | 8, 16, 20 | 3eltr4d 2844 | 1 ⊢ ((𝑅 ∈ Mnd ∧ 𝐼 ∈ 𝑉 ∧ 𝐴 ∈ 𝐼) → (𝑥 ∈ 𝐵 ↦ (𝑥‘𝐴)) ∈ (𝑌 MndHom 𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 ↦ cmpt 5191 × cxp 5639 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 Basecbs 17186 Scalarcsca 17230 Xscprds 17415 ↑s cpws 17416 Mndcmnd 18668 MndHom cmhm 18715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-0g 17411 df-prds 17417 df-pws 17419 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 |
| This theorem is referenced by: pwsmulg 19058 |
| Copyright terms: Public domain | W3C validator |