MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwspjmhm Structured version   Visualization version   GIF version

Theorem pwspjmhm 18808
Description: A projection from a structure power of a monoid to the monoid itself is a monoid homomorphism. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
pwspjmhm.y 𝑌 = (𝑅s 𝐼)
pwspjmhm.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
pwspjmhm ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem pwspjmhm
StepHypRef Expression
1 eqid 2735 . . 3 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2735 . . 3 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 simp2 1137 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝐼𝑉)
4 fvexd 6891 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (Scalar‘𝑅) ∈ V)
5 fconst6g 6767 . . . 4 (𝑅 ∈ Mnd → (𝐼 × {𝑅}):𝐼⟶Mnd)
653ad2ant1 1133 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝐼 × {𝑅}):𝐼⟶Mnd)
7 simp3 1138 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝐴𝐼)
81, 2, 3, 4, 6, 7prdspjmhm 18807 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ↦ (𝑥𝐴)) ∈ (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) MndHom ((𝐼 × {𝑅})‘𝐴)))
9 pwspjmhm.b . . . 4 𝐵 = (Base‘𝑌)
10 pwspjmhm.y . . . . . . 7 𝑌 = (𝑅s 𝐼)
11 eqid 2735 . . . . . . 7 (Scalar‘𝑅) = (Scalar‘𝑅)
1210, 11pwsval 17500 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
13123adant3 1132 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6880 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
159, 14eqtrid 2782 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1615mpteq1d 5210 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ↦ (𝑥𝐴)))
17 fvconst2g 7194 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐴𝐼) → ((𝐼 × {𝑅})‘𝐴) = 𝑅)
18173adant2 1131 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → ((𝐼 × {𝑅})‘𝐴) = 𝑅)
1918eqcomd 2741 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝑅 = ((𝐼 × {𝑅})‘𝐴))
2013, 19oveq12d 7423 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑌 MndHom 𝑅) = (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) MndHom ((𝐼 × {𝑅})‘𝐴)))
218, 16, 203eltr4d 2849 1 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601  cmpt 5201   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  Basecbs 17228  Scalarcsca 17274  Xscprds 17459  s cpws 17460  Mndcmnd 18712   MndHom cmhm 18759
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761
This theorem is referenced by:  pwsmulg  19102
  Copyright terms: Public domain W3C validator