MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwspjmhm Structured version   Visualization version   GIF version

Theorem pwspjmhm 17993
Description: A projection from a structure power of a monoid to the monoid itself is a monoid homomorphism. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
pwspjmhm.y 𝑌 = (𝑅s 𝐼)
pwspjmhm.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
pwspjmhm ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem pwspjmhm
StepHypRef Expression
1 eqid 2821 . . 3 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2821 . . 3 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 simp2 1133 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝐼𝑉)
4 fvexd 6684 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (Scalar‘𝑅) ∈ V)
5 fconst6g 6567 . . . 4 (𝑅 ∈ Mnd → (𝐼 × {𝑅}):𝐼⟶Mnd)
653ad2ant1 1129 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝐼 × {𝑅}):𝐼⟶Mnd)
7 simp3 1134 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝐴𝐼)
81, 2, 3, 4, 6, 7prdspjmhm 17992 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ↦ (𝑥𝐴)) ∈ (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) MndHom ((𝐼 × {𝑅})‘𝐴)))
9 pwspjmhm.b . . . 4 𝐵 = (Base‘𝑌)
10 pwspjmhm.y . . . . . . 7 𝑌 = (𝑅s 𝐼)
11 eqid 2821 . . . . . . 7 (Scalar‘𝑅) = (Scalar‘𝑅)
1210, 11pwsval 16758 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
13123adant3 1128 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6673 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
159, 14syl5eq 2868 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1615mpteq1d 5154 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ↦ (𝑥𝐴)))
17 fvconst2g 6963 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐴𝐼) → ((𝐼 × {𝑅})‘𝐴) = 𝑅)
18173adant2 1127 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → ((𝐼 × {𝑅})‘𝐴) = 𝑅)
1918eqcomd 2827 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝑅 = ((𝐼 × {𝑅})‘𝐴))
2013, 19oveq12d 7173 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑌 MndHom 𝑅) = (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) MndHom ((𝐼 × {𝑅})‘𝐴)))
218, 16, 203eltr4d 2928 1 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  {csn 4566  cmpt 5145   × cxp 5552  wf 6350  cfv 6354  (class class class)co 7155  Basecbs 16482  Scalarcsca 16567  Xscprds 16718  s cpws 16719  Mndcmnd 17910   MndHom cmhm 17953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5189  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-ixp 8461  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-fz 12892  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-plusg 16577  df-mulr 16578  df-sca 16580  df-vsca 16581  df-ip 16582  df-tset 16583  df-ple 16584  df-ds 16586  df-hom 16588  df-cco 16589  df-0g 16714  df-prds 16720  df-pws 16722  df-mgm 17851  df-sgrp 17900  df-mnd 17911  df-mhm 17955
This theorem is referenced by:  pwsmulg  18271
  Copyright terms: Public domain W3C validator