MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwspjmhm Structured version   Visualization version   GIF version

Theorem pwspjmhm 17988
Description: A projection from a structure power of a monoid to the monoid itself is a monoid homomorphism. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
pwspjmhm.y 𝑌 = (𝑅s 𝐼)
pwspjmhm.b 𝐵 = (Base‘𝑌)
Assertion
Ref Expression
pwspjmhm ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom 𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐼   𝑥,𝑅   𝑥,𝑉
Allowed substitution hint:   𝑌(𝑥)

Proof of Theorem pwspjmhm
StepHypRef Expression
1 eqid 2821 . . 3 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2821 . . 3 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 simp2 1133 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝐼𝑉)
4 fvexd 6680 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (Scalar‘𝑅) ∈ V)
5 fconst6g 6563 . . . 4 (𝑅 ∈ Mnd → (𝐼 × {𝑅}):𝐼⟶Mnd)
653ad2ant1 1129 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝐼 × {𝑅}):𝐼⟶Mnd)
7 simp3 1134 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝐴𝐼)
81, 2, 3, 4, 6, 7prdspjmhm 17987 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ↦ (𝑥𝐴)) ∈ (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) MndHom ((𝐼 × {𝑅})‘𝐴)))
9 pwspjmhm.b . . . 4 𝐵 = (Base‘𝑌)
10 pwspjmhm.y . . . . . . 7 𝑌 = (𝑅s 𝐼)
11 eqid 2821 . . . . . . 7 (Scalar‘𝑅) = (Scalar‘𝑅)
1210, 11pwsval 16753 . . . . . 6 ((𝑅 ∈ Mnd ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
13123adant3 1128 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6669 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
159, 14syl5eq 2868 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1615mpteq1d 5148 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥𝐵 ↦ (𝑥𝐴)) = (𝑥 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) ↦ (𝑥𝐴)))
17 fvconst2g 6959 . . . . 5 ((𝑅 ∈ Mnd ∧ 𝐴𝐼) → ((𝐼 × {𝑅})‘𝐴) = 𝑅)
18173adant2 1127 . . . 4 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → ((𝐼 × {𝑅})‘𝐴) = 𝑅)
1918eqcomd 2827 . . 3 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → 𝑅 = ((𝐼 × {𝑅})‘𝐴))
2013, 19oveq12d 7168 . 2 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑌 MndHom 𝑅) = (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) MndHom ((𝐼 × {𝑅})‘𝐴)))
218, 16, 203eltr4d 2928 1 ((𝑅 ∈ Mnd ∧ 𝐼𝑉𝐴𝐼) → (𝑥𝐵 ↦ (𝑥𝐴)) ∈ (𝑌 MndHom 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3495  {csn 4561  cmpt 5139   × cxp 5548  wf 6346  cfv 6350  (class class class)co 7150  Basecbs 16477  Scalarcsca 16562  Xscprds 16713  s cpws 16714  Mndcmnd 17905   MndHom cmhm 17948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-prds 16715  df-pws 16717  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950
This theorem is referenced by:  pwsmulg  18266
  Copyright terms: Public domain W3C validator