MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsinvg Structured version   Visualization version   GIF version

Theorem pwsinvg 18985
Description: Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y 𝑌 = (𝑅s 𝐼)
pwsinvg.b 𝐵 = (Base‘𝑌)
pwsinvg.m 𝑀 = (invg𝑅)
pwsinvg.n 𝑁 = (invg𝑌)
Assertion
Ref Expression
pwsinvg ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = (𝑀𝑋))

Proof of Theorem pwsinvg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 simp2 1137 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝐼𝑉)
3 fvexd 6873 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (Scalar‘𝑅) ∈ V)
4 simp1 1136 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑅 ∈ Grp)
5 fconst6g 6749 . . . . 5 (𝑅 ∈ Grp → (𝐼 × {𝑅}):𝐼⟶Grp)
64, 5syl 17 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝐼 × {𝑅}):𝐼⟶Grp)
7 eqid 2729 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
8 eqid 2729 . . . 4 (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
9 simp3 1138 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋𝐵)
10 pwsinvg.b . . . . . 6 𝐵 = (Base‘𝑌)
11 pwsgrp.y . . . . . . . . 9 𝑌 = (𝑅s 𝐼)
12 eqid 2729 . . . . . . . . 9 (Scalar‘𝑅) = (Scalar‘𝑅)
1311, 12pwsval 17449 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
14133adant3 1132 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1514fveq2d 6862 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1610, 15eqtrid 2776 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
179, 16eleqtrd 2830 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
181, 2, 3, 6, 7, 8, 17prdsinvgd 18983 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥))))
19 fvconst2g 7176 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
204, 19sylan 580 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2120fveq2d 6862 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = (invg𝑅))
22 pwsinvg.m . . . . . 6 𝑀 = (invg𝑅)
2321, 22eqtr4di 2782 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = 𝑀)
2423fveq1d 6860 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥)) = (𝑀‘(𝑋𝑥)))
2524mpteq2dva 5200 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑥𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥))) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
2618, 25eqtrd 2764 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
27 pwsinvg.n . . . 4 𝑁 = (invg𝑌)
2814fveq2d 6862 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (invg𝑌) = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
2927, 28eqtrid 2776 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑁 = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3029fveq1d 6860 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋))
31 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3211, 31, 10, 4, 2, 9pwselbas 17452 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
3332ffvelcdmda 7056 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ (Base‘𝑅))
3432feqmptd 6929 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
3531, 22grpinvf 18918 . . . . 5 (𝑅 ∈ Grp → 𝑀:(Base‘𝑅)⟶(Base‘𝑅))
364, 35syl 17 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑀:(Base‘𝑅)⟶(Base‘𝑅))
3736feqmptd 6929 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑀 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑀𝑦)))
38 fveq2 6858 . . 3 (𝑦 = (𝑋𝑥) → (𝑀𝑦) = (𝑀‘(𝑋𝑥)))
3933, 34, 37, 38fmptco 7101 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑀𝑋) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
4026, 30, 393eqtr4d 2774 1 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = (𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589  cmpt 5188   × cxp 5636  ccom 5642  wf 6507  cfv 6511  (class class class)co 7387  Basecbs 17179  Scalarcsca 17223  Xscprds 17408  s cpws 17409  Grpcgrp 18865  invgcminusg 18866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869
This theorem is referenced by:  pwssub  18986
  Copyright terms: Public domain W3C validator