MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsinvg Structured version   Visualization version   GIF version

Theorem pwsinvg 17883
Description: Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y 𝑌 = (𝑅s 𝐼)
pwsinvg.b 𝐵 = (Base‘𝑌)
pwsinvg.m 𝑀 = (invg𝑅)
pwsinvg.n 𝑁 = (invg𝑌)
Assertion
Ref Expression
pwsinvg ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = (𝑀𝑋))

Proof of Theorem pwsinvg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2826 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 simp2 1173 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝐼𝑉)
3 fvexd 6449 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (Scalar‘𝑅) ∈ V)
4 simp1 1172 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑅 ∈ Grp)
5 fconst6g 6332 . . . . 5 (𝑅 ∈ Grp → (𝐼 × {𝑅}):𝐼⟶Grp)
64, 5syl 17 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝐼 × {𝑅}):𝐼⟶Grp)
7 eqid 2826 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
8 eqid 2826 . . . 4 (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
9 simp3 1174 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋𝐵)
10 pwsinvg.b . . . . . 6 𝐵 = (Base‘𝑌)
11 pwsgrp.y . . . . . . . . 9 𝑌 = (𝑅s 𝐼)
12 eqid 2826 . . . . . . . . 9 (Scalar‘𝑅) = (Scalar‘𝑅)
1311, 12pwsval 16500 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
14133adant3 1168 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1514fveq2d 6438 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1610, 15syl5eq 2874 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
179, 16eleqtrd 2909 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
181, 2, 3, 6, 7, 8, 17prdsinvgd 17881 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥))))
19 fvconst2g 6724 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
204, 19sylan 577 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2120fveq2d 6438 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = (invg𝑅))
22 pwsinvg.m . . . . . 6 𝑀 = (invg𝑅)
2321, 22syl6eqr 2880 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = 𝑀)
2423fveq1d 6436 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥)) = (𝑀‘(𝑋𝑥)))
2524mpteq2dva 4968 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑥𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥))) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
2618, 25eqtrd 2862 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
27 pwsinvg.n . . . 4 𝑁 = (invg𝑌)
2814fveq2d 6438 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (invg𝑌) = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
2927, 28syl5eq 2874 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑁 = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3029fveq1d 6436 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋))
31 eqid 2826 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3211, 31, 10, 4, 2, 9pwselbas 16503 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
3332ffvelrnda 6609 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ (Base‘𝑅))
3432feqmptd 6497 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
3531, 22grpinvf 17821 . . . . 5 (𝑅 ∈ Grp → 𝑀:(Base‘𝑅)⟶(Base‘𝑅))
364, 35syl 17 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑀:(Base‘𝑅)⟶(Base‘𝑅))
3736feqmptd 6497 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑀 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑀𝑦)))
38 fveq2 6434 . . 3 (𝑦 = (𝑋𝑥) → (𝑀𝑦) = (𝑀‘(𝑋𝑥)))
3933, 34, 37, 38fmptco 6647 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑀𝑋) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
4026, 30, 393eqtr4d 2872 1 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = (𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1113   = wceq 1658  wcel 2166  Vcvv 3415  {csn 4398  cmpt 4953   × cxp 5341  ccom 5347  wf 6120  cfv 6124  (class class class)co 6906  Basecbs 16223  Scalarcsca 16309  Xscprds 16460  s cpws 16461  Grpcgrp 17777  invgcminusg 17778
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2804  ax-rep 4995  ax-sep 5006  ax-nul 5014  ax-pow 5066  ax-pr 5128  ax-un 7210  ax-cnex 10309  ax-resscn 10310  ax-1cn 10311  ax-icn 10312  ax-addcl 10313  ax-addrcl 10314  ax-mulcl 10315  ax-mulrcl 10316  ax-mulcom 10317  ax-addass 10318  ax-mulass 10319  ax-distr 10320  ax-i2m1 10321  ax-1ne0 10322  ax-1rid 10323  ax-rnegex 10324  ax-rrecex 10325  ax-cnre 10326  ax-pre-lttri 10327  ax-pre-lttrn 10328  ax-pre-ltadd 10329  ax-pre-mulgt0 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2606  df-eu 2641  df-clab 2813  df-cleq 2819  df-clel 2822  df-nfc 2959  df-ne 3001  df-nel 3104  df-ral 3123  df-rex 3124  df-reu 3125  df-rmo 3126  df-rab 3127  df-v 3417  df-sbc 3664  df-csb 3759  df-dif 3802  df-un 3804  df-in 3806  df-ss 3813  df-pss 3815  df-nul 4146  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4660  df-int 4699  df-iun 4743  df-br 4875  df-opab 4937  df-mpt 4954  df-tr 4977  df-id 5251  df-eprel 5256  df-po 5264  df-so 5265  df-fr 5302  df-we 5304  df-xp 5349  df-rel 5350  df-cnv 5351  df-co 5352  df-dm 5353  df-rn 5354  df-res 5355  df-ima 5356  df-pred 5921  df-ord 5967  df-on 5968  df-lim 5969  df-suc 5970  df-iota 6087  df-fun 6126  df-fn 6127  df-f 6128  df-f1 6129  df-fo 6130  df-f1o 6131  df-fv 6132  df-riota 6867  df-ov 6909  df-oprab 6910  df-mpt2 6911  df-om 7328  df-1st 7429  df-2nd 7430  df-wrecs 7673  df-recs 7735  df-rdg 7773  df-1o 7827  df-oadd 7831  df-er 8010  df-map 8125  df-ixp 8177  df-en 8224  df-dom 8225  df-sdom 8226  df-fin 8227  df-sup 8618  df-pnf 10394  df-mnf 10395  df-xr 10396  df-ltxr 10397  df-le 10398  df-sub 10588  df-neg 10589  df-nn 11352  df-2 11415  df-3 11416  df-4 11417  df-5 11418  df-6 11419  df-7 11420  df-8 11421  df-9 11422  df-n0 11620  df-z 11706  df-dec 11823  df-uz 11970  df-fz 12621  df-struct 16225  df-ndx 16226  df-slot 16227  df-base 16229  df-plusg 16319  df-mulr 16320  df-sca 16322  df-vsca 16323  df-ip 16324  df-tset 16325  df-ple 16326  df-ds 16328  df-hom 16330  df-cco 16331  df-0g 16456  df-prds 16462  df-pws 16464  df-mgm 17596  df-sgrp 17638  df-mnd 17649  df-grp 17780  df-minusg 17781
This theorem is referenced by:  pwssub  17884
  Copyright terms: Public domain W3C validator