MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsinvg Structured version   Visualization version   GIF version

Theorem pwsinvg 18603
Description: Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y 𝑌 = (𝑅s 𝐼)
pwsinvg.b 𝐵 = (Base‘𝑌)
pwsinvg.m 𝑀 = (invg𝑅)
pwsinvg.n 𝑁 = (invg𝑌)
Assertion
Ref Expression
pwsinvg ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = (𝑀𝑋))

Proof of Theorem pwsinvg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 simp2 1135 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝐼𝑉)
3 fvexd 6771 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (Scalar‘𝑅) ∈ V)
4 simp1 1134 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑅 ∈ Grp)
5 fconst6g 6647 . . . . 5 (𝑅 ∈ Grp → (𝐼 × {𝑅}):𝐼⟶Grp)
64, 5syl 17 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝐼 × {𝑅}):𝐼⟶Grp)
7 eqid 2738 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
8 eqid 2738 . . . 4 (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
9 simp3 1136 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋𝐵)
10 pwsinvg.b . . . . . 6 𝐵 = (Base‘𝑌)
11 pwsgrp.y . . . . . . . . 9 𝑌 = (𝑅s 𝐼)
12 eqid 2738 . . . . . . . . 9 (Scalar‘𝑅) = (Scalar‘𝑅)
1311, 12pwsval 17114 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
14133adant3 1130 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1514fveq2d 6760 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1610, 15eqtrid 2790 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
179, 16eleqtrd 2841 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
181, 2, 3, 6, 7, 8, 17prdsinvgd 18601 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥))))
19 fvconst2g 7059 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
204, 19sylan 579 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2120fveq2d 6760 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = (invg𝑅))
22 pwsinvg.m . . . . . 6 𝑀 = (invg𝑅)
2321, 22eqtr4di 2797 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = 𝑀)
2423fveq1d 6758 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥)) = (𝑀‘(𝑋𝑥)))
2524mpteq2dva 5170 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑥𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥))) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
2618, 25eqtrd 2778 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
27 pwsinvg.n . . . 4 𝑁 = (invg𝑌)
2814fveq2d 6760 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (invg𝑌) = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
2927, 28eqtrid 2790 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑁 = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3029fveq1d 6758 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋))
31 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3211, 31, 10, 4, 2, 9pwselbas 17117 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
3332ffvelrnda 6943 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ (Base‘𝑅))
3432feqmptd 6819 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
3531, 22grpinvf 18541 . . . . 5 (𝑅 ∈ Grp → 𝑀:(Base‘𝑅)⟶(Base‘𝑅))
364, 35syl 17 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑀:(Base‘𝑅)⟶(Base‘𝑅))
3736feqmptd 6819 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑀 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑀𝑦)))
38 fveq2 6756 . . 3 (𝑦 = (𝑋𝑥) → (𝑀𝑦) = (𝑀‘(𝑋𝑥)))
3933, 34, 37, 38fmptco 6983 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑀𝑋) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
4026, 30, 393eqtr4d 2788 1 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = (𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  Vcvv 3422  {csn 4558  cmpt 5153   × cxp 5578  ccom 5584  wf 6414  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891  Xscprds 17073  s cpws 17074  Grpcgrp 18492  invgcminusg 18493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-0g 17069  df-prds 17075  df-pws 17077  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496
This theorem is referenced by:  pwssub  18604
  Copyright terms: Public domain W3C validator