MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsinvg Structured version   Visualization version   GIF version

Theorem pwsinvg 18330
Description: Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y 𝑌 = (𝑅s 𝐼)
pwsinvg.b 𝐵 = (Base‘𝑌)
pwsinvg.m 𝑀 = (invg𝑅)
pwsinvg.n 𝑁 = (invg𝑌)
Assertion
Ref Expression
pwsinvg ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = (𝑀𝑋))

Proof of Theorem pwsinvg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 simp2 1138 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝐼𝑉)
3 fvexd 6689 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (Scalar‘𝑅) ∈ V)
4 simp1 1137 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑅 ∈ Grp)
5 fconst6g 6567 . . . . 5 (𝑅 ∈ Grp → (𝐼 × {𝑅}):𝐼⟶Grp)
64, 5syl 17 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝐼 × {𝑅}):𝐼⟶Grp)
7 eqid 2738 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
8 eqid 2738 . . . 4 (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
9 simp3 1139 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋𝐵)
10 pwsinvg.b . . . . . 6 𝐵 = (Base‘𝑌)
11 pwsgrp.y . . . . . . . . 9 𝑌 = (𝑅s 𝐼)
12 eqid 2738 . . . . . . . . 9 (Scalar‘𝑅) = (Scalar‘𝑅)
1311, 12pwsval 16862 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
14133adant3 1133 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1514fveq2d 6678 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1610, 15syl5eq 2785 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
179, 16eleqtrd 2835 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
181, 2, 3, 6, 7, 8, 17prdsinvgd 18328 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥))))
19 fvconst2g 6974 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
204, 19sylan 583 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2120fveq2d 6678 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = (invg𝑅))
22 pwsinvg.m . . . . . 6 𝑀 = (invg𝑅)
2321, 22eqtr4di 2791 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = 𝑀)
2423fveq1d 6676 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥)) = (𝑀‘(𝑋𝑥)))
2524mpteq2dva 5125 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑥𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥))) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
2618, 25eqtrd 2773 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
27 pwsinvg.n . . . 4 𝑁 = (invg𝑌)
2814fveq2d 6678 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (invg𝑌) = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
2927, 28syl5eq 2785 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑁 = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3029fveq1d 6676 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋))
31 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3211, 31, 10, 4, 2, 9pwselbas 16865 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
3332ffvelrnda 6861 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ (Base‘𝑅))
3432feqmptd 6737 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
3531, 22grpinvf 18268 . . . . 5 (𝑅 ∈ Grp → 𝑀:(Base‘𝑅)⟶(Base‘𝑅))
364, 35syl 17 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑀:(Base‘𝑅)⟶(Base‘𝑅))
3736feqmptd 6737 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑀 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑀𝑦)))
38 fveq2 6674 . . 3 (𝑦 = (𝑋𝑥) → (𝑀𝑦) = (𝑀‘(𝑋𝑥)))
3933, 34, 37, 38fmptco 6901 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑀𝑋) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
4026, 30, 393eqtr4d 2783 1 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = (𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  Vcvv 3398  {csn 4516  cmpt 5110   × cxp 5523  ccom 5529  wf 6335  cfv 6339  (class class class)co 7170  Basecbs 16586  Scalarcsca 16671  Xscprds 16822  s cpws 16823  Grpcgrp 18219  invgcminusg 18220
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5232  ax-pr 5296  ax-un 7479  ax-cnex 10671  ax-resscn 10672  ax-1cn 10673  ax-icn 10674  ax-addcl 10675  ax-addrcl 10676  ax-mulcl 10677  ax-mulrcl 10678  ax-mulcom 10679  ax-addass 10680  ax-mulass 10681  ax-distr 10682  ax-i2m1 10683  ax-1ne0 10684  ax-1rid 10685  ax-rnegex 10686  ax-rrecex 10687  ax-cnre 10688  ax-pre-lttri 10689  ax-pre-lttrn 10690  ax-pre-ltadd 10691  ax-pre-mulgt0 10692
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2540  df-eu 2570  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ne 2935  df-nel 3039  df-ral 3058  df-rex 3059  df-reu 3060  df-rmo 3061  df-rab 3062  df-v 3400  df-sbc 3681  df-csb 3791  df-dif 3846  df-un 3848  df-in 3850  df-ss 3860  df-pss 3862  df-nul 4212  df-if 4415  df-pw 4490  df-sn 4517  df-pr 4519  df-tp 4521  df-op 4523  df-uni 4797  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5429  df-eprel 5434  df-po 5442  df-so 5443  df-fr 5483  df-we 5485  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6129  df-ord 6175  df-on 6176  df-lim 6177  df-suc 6178  df-iota 6297  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-riota 7127  df-ov 7173  df-oprab 7174  df-mpo 7175  df-om 7600  df-1st 7714  df-2nd 7715  df-wrecs 7976  df-recs 8037  df-rdg 8075  df-1o 8131  df-er 8320  df-map 8439  df-ixp 8508  df-en 8556  df-dom 8557  df-sdom 8558  df-fin 8559  df-sup 8979  df-pnf 10755  df-mnf 10756  df-xr 10757  df-ltxr 10758  df-le 10759  df-sub 10950  df-neg 10951  df-nn 11717  df-2 11779  df-3 11780  df-4 11781  df-5 11782  df-6 11783  df-7 11784  df-8 11785  df-9 11786  df-n0 11977  df-z 12063  df-dec 12180  df-uz 12325  df-fz 12982  df-struct 16588  df-ndx 16589  df-slot 16590  df-base 16592  df-plusg 16681  df-mulr 16682  df-sca 16684  df-vsca 16685  df-ip 16686  df-tset 16687  df-ple 16688  df-ds 16690  df-hom 16692  df-cco 16693  df-0g 16818  df-prds 16824  df-pws 16826  df-mgm 17968  df-sgrp 18017  df-mnd 18028  df-grp 18222  df-minusg 18223
This theorem is referenced by:  pwssub  18331
  Copyright terms: Public domain W3C validator