MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsinvg Structured version   Visualization version   GIF version

Theorem pwsinvg 18970
Description: Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y 𝑌 = (𝑅s 𝐼)
pwsinvg.b 𝐵 = (Base‘𝑌)
pwsinvg.m 𝑀 = (invg𝑅)
pwsinvg.n 𝑁 = (invg𝑌)
Assertion
Ref Expression
pwsinvg ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = (𝑀𝑋))

Proof of Theorem pwsinvg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 simp2 1137 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝐼𝑉)
3 fvexd 6845 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (Scalar‘𝑅) ∈ V)
4 simp1 1136 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑅 ∈ Grp)
5 fconst6g 6719 . . . . 5 (𝑅 ∈ Grp → (𝐼 × {𝑅}):𝐼⟶Grp)
64, 5syl 17 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝐼 × {𝑅}):𝐼⟶Grp)
7 eqid 2733 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
8 eqid 2733 . . . 4 (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
9 simp3 1138 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋𝐵)
10 pwsinvg.b . . . . . 6 𝐵 = (Base‘𝑌)
11 pwsgrp.y . . . . . . . . 9 𝑌 = (𝑅s 𝐼)
12 eqid 2733 . . . . . . . . 9 (Scalar‘𝑅) = (Scalar‘𝑅)
1311, 12pwsval 17394 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
14133adant3 1132 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1514fveq2d 6834 . . . . . 6 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1610, 15eqtrid 2780 . . . . 5 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
179, 16eleqtrd 2835 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
181, 2, 3, 6, 7, 8, 17prdsinvgd 18968 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥))))
19 fvconst2g 7144 . . . . . . . 8 ((𝑅 ∈ Grp ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
204, 19sylan 580 . . . . . . 7 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2120fveq2d 6834 . . . . . 6 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = (invg𝑅))
22 pwsinvg.m . . . . . 6 𝑀 = (invg𝑅)
2321, 22eqtr4di 2786 . . . . 5 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (invg‘((𝐼 × {𝑅})‘𝑥)) = 𝑀)
2423fveq1d 6832 . . . 4 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥)) = (𝑀‘(𝑋𝑥)))
2524mpteq2dva 5188 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑥𝐼 ↦ ((invg‘((𝐼 × {𝑅})‘𝑥))‘(𝑋𝑥))) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
2618, 25eqtrd 2768 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
27 pwsinvg.n . . . 4 𝑁 = (invg𝑌)
2814fveq2d 6834 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (invg𝑌) = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
2927, 28eqtrid 2780 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑁 = (invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3029fveq1d 6832 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = ((invg‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))‘𝑋))
31 eqid 2733 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3211, 31, 10, 4, 2, 9pwselbas 17397 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋:𝐼⟶(Base‘𝑅))
3332ffvelcdmda 7025 . . 3 (((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) ∧ 𝑥𝐼) → (𝑋𝑥) ∈ (Base‘𝑅))
3432feqmptd 6898 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
3531, 22grpinvf 18903 . . . . 5 (𝑅 ∈ Grp → 𝑀:(Base‘𝑅)⟶(Base‘𝑅))
364, 35syl 17 . . . 4 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑀:(Base‘𝑅)⟶(Base‘𝑅))
3736feqmptd 6898 . . 3 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → 𝑀 = (𝑦 ∈ (Base‘𝑅) ↦ (𝑀𝑦)))
38 fveq2 6830 . . 3 (𝑦 = (𝑋𝑥) → (𝑀𝑦) = (𝑀‘(𝑋𝑥)))
3933, 34, 37, 38fmptco 7070 . 2 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑀𝑋) = (𝑥𝐼 ↦ (𝑀‘(𝑋𝑥))))
4026, 30, 393eqtr4d 2778 1 ((𝑅 ∈ Grp ∧ 𝐼𝑉𝑋𝐵) → (𝑁𝑋) = (𝑀𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2113  Vcvv 3437  {csn 4577  cmpt 5176   × cxp 5619  ccom 5625  wf 6484  cfv 6488  (class class class)co 7354  Basecbs 17124  Scalarcsca 17168  Xscprds 17353  s cpws 17354  Grpcgrp 18850  invgcminusg 18851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-map 8760  df-ixp 8830  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-struct 17062  df-slot 17097  df-ndx 17109  df-base 17125  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-hom 17189  df-cco 17190  df-0g 17349  df-prds 17355  df-pws 17357  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854
This theorem is referenced by:  pwssub  18971
  Copyright terms: Public domain W3C validator