| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsgsum | Structured version Visualization version GIF version | ||
| Description: Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| pwsgsum.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsgsum.b | ⊢ 𝐵 = (Base‘𝑅) |
| pwsgsum.z | ⊢ 0 = (0g‘𝑌) |
| pwsgsum.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| pwsgsum.j | ⊢ (𝜑 → 𝐽 ∈ 𝑊) |
| pwsgsum.r | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| pwsgsum.f | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) |
| pwsgsum.w | ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) |
| Ref | Expression |
|---|---|
| pwsgsum | ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsgsum.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 2 | pwsgsum.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 3 | pwsgsum.y | . . . . 5 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 5 | 3, 4 | pwsval 17425 | . . . 4 ⊢ ((𝑅 ∈ CMnd ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 7 | 6 | oveq1d 7384 | . 2 ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))) |
| 8 | fconstmpt 5693 | . . . 4 ⊢ (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
| 9 | 8 | oveq2i 7380 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| 10 | pwsgsum.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 11 | eqid 2729 | . . 3 ⊢ (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 12 | pwsgsum.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑊) | |
| 13 | fvexd 6855 | . . 3 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | |
| 14 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ CMnd) |
| 15 | pwsgsum.f | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) | |
| 16 | pwsgsum.w | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) | |
| 17 | pwsgsum.z | . . . . 5 ⊢ 0 = (0g‘𝑌) | |
| 18 | 6 | fveq2d 6844 | . . . . 5 ⊢ (𝜑 → (0g‘𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 19 | 17, 18 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → 0 = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 20 | 16, 19 | breqtrd 5128 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 21 | 9, 10, 11, 2, 12, 13, 14, 15, 20 | prdsgsum 19887 | . 2 ⊢ (𝜑 → (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
| 22 | 7, 21 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {csn 4585 class class class wbr 5102 ↦ cmpt 5183 × cxp 5629 ‘cfv 6499 (class class class)co 7369 finSupp cfsupp 9288 Basecbs 17155 Scalarcsca 17199 0gc0g 17378 Σg cgsu 17379 Xscprds 17384 ↑s cpws 17385 CMndccmn 19686 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-slot 17128 df-ndx 17140 df-base 17156 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-cntz 19225 df-cmn 19688 |
| This theorem is referenced by: frlmgsum 21657 evls1fpws 22232 plypf1 26093 evlsvvval 42524 |
| Copyright terms: Public domain | W3C validator |