MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsgsum Structured version   Visualization version   GIF version

Theorem pwsgsum 19912
Description: Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
pwsgsum.y 𝑌 = (𝑅s 𝐼)
pwsgsum.b 𝐵 = (Base‘𝑅)
pwsgsum.z 0 = (0g𝑌)
pwsgsum.i (𝜑𝐼𝑉)
pwsgsum.j (𝜑𝐽𝑊)
pwsgsum.r (𝜑𝑅 ∈ CMnd)
pwsgsum.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
pwsgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
pwsgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem pwsgsum
StepHypRef Expression
1 pwsgsum.r . . . 4 (𝜑𝑅 ∈ CMnd)
2 pwsgsum.i . . . 4 (𝜑𝐼𝑉)
3 pwsgsum.y . . . . 5 𝑌 = (𝑅s 𝐼)
4 eqid 2729 . . . . 5 (Scalar‘𝑅) = (Scalar‘𝑅)
53, 4pwsval 17449 . . . 4 ((𝑅 ∈ CMnd ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
61, 2, 5syl2anc 584 . . 3 (𝜑𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
76oveq1d 7402 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
8 fconstmpt 5700 . . . 4 (𝐼 × {𝑅}) = (𝑥𝐼𝑅)
98oveq2i 7398 . . 3 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝑥𝐼𝑅))
10 pwsgsum.b . . 3 𝐵 = (Base‘𝑅)
11 eqid 2729 . . 3 (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
12 pwsgsum.j . . 3 (𝜑𝐽𝑊)
13 fvexd 6873 . . 3 (𝜑 → (Scalar‘𝑅) ∈ V)
141adantr 480 . . 3 ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
15 pwsgsum.f . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
16 pwsgsum.w . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
17 pwsgsum.z . . . . 5 0 = (0g𝑌)
186fveq2d 6862 . . . . 5 (𝜑 → (0g𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1917, 18eqtrid 2776 . . . 4 (𝜑0 = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
2016, 19breqtrd 5133 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
219, 10, 11, 2, 12, 13, 14, 15, 20prdsgsum 19911 . 2 (𝜑 → (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
227, 21eqtrd 2764 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447  {csn 4589   class class class wbr 5107  cmpt 5188   × cxp 5636  cfv 6511  (class class class)co 7387   finSupp cfsupp 9312  Basecbs 17179  Scalarcsca 17223  0gc0g 17402   Σg cgsu 17403  Xscprds 17408  s cpws 17409  CMndccmn 19710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-sup 9393  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-fzo 13616  df-seq 13967  df-hash 14296  df-struct 17117  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-hom 17244  df-cco 17245  df-0g 17404  df-gsum 17405  df-prds 17410  df-pws 17412  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-mhm 18710  df-cntz 19249  df-cmn 19712
This theorem is referenced by:  frlmgsum  21681  evls1fpws  22256  plypf1  26117  evlsvvval  42551
  Copyright terms: Public domain W3C validator