| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsgsum | Structured version Visualization version GIF version | ||
| Description: Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| pwsgsum.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsgsum.b | ⊢ 𝐵 = (Base‘𝑅) |
| pwsgsum.z | ⊢ 0 = (0g‘𝑌) |
| pwsgsum.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| pwsgsum.j | ⊢ (𝜑 → 𝐽 ∈ 𝑊) |
| pwsgsum.r | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| pwsgsum.f | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) |
| pwsgsum.w | ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) |
| Ref | Expression |
|---|---|
| pwsgsum | ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsgsum.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 2 | pwsgsum.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 3 | pwsgsum.y | . . . . 5 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 4 | eqid 2731 | . . . . 5 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 5 | 3, 4 | pwsval 17390 | . . . 4 ⊢ ((𝑅 ∈ CMnd ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 7 | 6 | oveq1d 7361 | . 2 ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))) |
| 8 | fconstmpt 5676 | . . . 4 ⊢ (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
| 9 | 8 | oveq2i 7357 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| 10 | pwsgsum.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 11 | eqid 2731 | . . 3 ⊢ (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 12 | pwsgsum.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑊) | |
| 13 | fvexd 6837 | . . 3 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | |
| 14 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ CMnd) |
| 15 | pwsgsum.f | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) | |
| 16 | pwsgsum.w | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) | |
| 17 | pwsgsum.z | . . . . 5 ⊢ 0 = (0g‘𝑌) | |
| 18 | 6 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (0g‘𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 19 | 17, 18 | eqtrid 2778 | . . . 4 ⊢ (𝜑 → 0 = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 20 | 16, 19 | breqtrd 5115 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 21 | 9, 10, 11, 2, 12, 13, 14, 15, 20 | prdsgsum 19893 | . 2 ⊢ (𝜑 → (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
| 22 | 7, 21 | eqtrd 2766 | 1 ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4573 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 ‘cfv 6481 (class class class)co 7346 finSupp cfsupp 9245 Basecbs 17120 Scalarcsca 17164 0gc0g 17343 Σg cgsu 17344 Xscprds 17349 ↑s cpws 17350 CMndccmn 19692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-sup 9326 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-cntz 19229 df-cmn 19694 |
| This theorem is referenced by: frlmgsum 21709 evls1fpws 22284 plypf1 26144 extdgfialglem2 33706 evlsvvval 42666 |
| Copyright terms: Public domain | W3C validator |