MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsgsum Structured version   Visualization version   GIF version

Theorem pwsgsum 19367
Description: Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
pwsgsum.y 𝑌 = (𝑅s 𝐼)
pwsgsum.b 𝐵 = (Base‘𝑅)
pwsgsum.z 0 = (0g𝑌)
pwsgsum.i (𝜑𝐼𝑉)
pwsgsum.j (𝜑𝐽𝑊)
pwsgsum.r (𝜑𝑅 ∈ CMnd)
pwsgsum.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
pwsgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
pwsgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem pwsgsum
StepHypRef Expression
1 pwsgsum.r . . . 4 (𝜑𝑅 ∈ CMnd)
2 pwsgsum.i . . . 4 (𝜑𝐼𝑉)
3 pwsgsum.y . . . . 5 𝑌 = (𝑅s 𝐼)
4 eqid 2737 . . . . 5 (Scalar‘𝑅) = (Scalar‘𝑅)
53, 4pwsval 16991 . . . 4 ((𝑅 ∈ CMnd ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
61, 2, 5syl2anc 587 . . 3 (𝜑𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
76oveq1d 7228 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
8 fconstmpt 5611 . . . 4 (𝐼 × {𝑅}) = (𝑥𝐼𝑅)
98oveq2i 7224 . . 3 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝑥𝐼𝑅))
10 pwsgsum.b . . 3 𝐵 = (Base‘𝑅)
11 eqid 2737 . . 3 (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
12 pwsgsum.j . . 3 (𝜑𝐽𝑊)
13 fvexd 6732 . . 3 (𝜑 → (Scalar‘𝑅) ∈ V)
141adantr 484 . . 3 ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
15 pwsgsum.f . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
16 pwsgsum.w . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
17 pwsgsum.z . . . . 5 0 = (0g𝑌)
186fveq2d 6721 . . . . 5 (𝜑 → (0g𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1917, 18syl5eq 2790 . . . 4 (𝜑0 = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
2016, 19breqtrd 5079 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
219, 10, 11, 2, 12, 13, 14, 15, 20prdsgsum 19366 . 2 (𝜑 → (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
227, 21eqtrd 2777 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  Vcvv 3408  {csn 4541   class class class wbr 5053  cmpt 5135   × cxp 5549  cfv 6380  (class class class)co 7213   finSupp cfsupp 8985  Basecbs 16760  Scalarcsca 16805  0gc0g 16944   Σg cgsu 16945  Xscprds 16950  s cpws 16951  CMndccmn 19170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-int 4860  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-se 5510  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-isom 6389  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-supp 7904  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-map 8510  df-ixp 8579  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-fsupp 8986  df-sup 9058  df-oi 9126  df-card 9555  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-fzo 13239  df-seq 13575  df-hash 13897  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-sca 16818  df-vsca 16819  df-ip 16820  df-tset 16821  df-ple 16822  df-ds 16824  df-hom 16826  df-cco 16827  df-0g 16946  df-gsum 16947  df-prds 16952  df-pws 16954  df-mgm 18114  df-sgrp 18163  df-mnd 18174  df-mhm 18218  df-cntz 18711  df-cmn 19172
This theorem is referenced by:  frlmgsum  20734  plypf1  25106
  Copyright terms: Public domain W3C validator