MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsgsum Structured version   Visualization version   GIF version

Theorem pwsgsum 19963
Description: Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.)
Hypotheses
Ref Expression
pwsgsum.y 𝑌 = (𝑅s 𝐼)
pwsgsum.b 𝐵 = (Base‘𝑅)
pwsgsum.z 0 = (0g𝑌)
pwsgsum.i (𝜑𝐼𝑉)
pwsgsum.j (𝜑𝐽𝑊)
pwsgsum.r (𝜑𝑅 ∈ CMnd)
pwsgsum.f ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
pwsgsum.w (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
Assertion
Ref Expression
pwsgsum (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦   𝑥, 0 ,𝑦   𝑥,𝐽,𝑦   𝑥,𝑅,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem pwsgsum
StepHypRef Expression
1 pwsgsum.r . . . 4 (𝜑𝑅 ∈ CMnd)
2 pwsgsum.i . . . 4 (𝜑𝐼𝑉)
3 pwsgsum.y . . . . 5 𝑌 = (𝑅s 𝐼)
4 eqid 2735 . . . . 5 (Scalar‘𝑅) = (Scalar‘𝑅)
53, 4pwsval 17500 . . . 4 ((𝑅 ∈ CMnd ∧ 𝐼𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
61, 2, 5syl2anc 584 . . 3 (𝜑𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
76oveq1d 7420 . 2 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))))
8 fconstmpt 5716 . . . 4 (𝐼 × {𝑅}) = (𝑥𝐼𝑅)
98oveq2i 7416 . . 3 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝑥𝐼𝑅))
10 pwsgsum.b . . 3 𝐵 = (Base‘𝑅)
11 eqid 2735 . . 3 (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
12 pwsgsum.j . . 3 (𝜑𝐽𝑊)
13 fvexd 6891 . . 3 (𝜑 → (Scalar‘𝑅) ∈ V)
141adantr 480 . . 3 ((𝜑𝑥𝐼) → 𝑅 ∈ CMnd)
15 pwsgsum.f . . 3 ((𝜑 ∧ (𝑥𝐼𝑦𝐽)) → 𝑈𝐵)
16 pwsgsum.w . . . 4 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp 0 )
17 pwsgsum.z . . . . 5 0 = (0g𝑌)
186fveq2d 6880 . . . . 5 (𝜑 → (0g𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
1917, 18eqtrid 2782 . . . 4 (𝜑0 = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
2016, 19breqtrd 5145 . . 3 (𝜑 → (𝑦𝐽 ↦ (𝑥𝐼𝑈)) finSupp (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
219, 10, 11, 2, 12, 13, 14, 15, 20prdsgsum 19962 . 2 (𝜑 → (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
227, 21eqtrd 2770 1 (𝜑 → (𝑌 Σg (𝑦𝐽 ↦ (𝑥𝐼𝑈))) = (𝑥𝐼 ↦ (𝑅 Σg (𝑦𝐽𝑈))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  {csn 4601   class class class wbr 5119  cmpt 5201   × cxp 5652  cfv 6531  (class class class)co 7405   finSupp cfsupp 9373  Basecbs 17228  Scalarcsca 17274  0gc0g 17453   Σg cgsu 17454  Xscprds 17459  s cpws 17460  CMndccmn 19761
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-slot 17201  df-ndx 17213  df-base 17229  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-cntz 19300  df-cmn 19763
This theorem is referenced by:  frlmgsum  21732  evls1fpws  22307  plypf1  26169  evlsvvval  42586
  Copyright terms: Public domain W3C validator