![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsgsum | Structured version Visualization version GIF version |
Description: Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
Ref | Expression |
---|---|
pwsgsum.y | β’ π = (π βs πΌ) |
pwsgsum.b | β’ π΅ = (Baseβπ ) |
pwsgsum.z | β’ 0 = (0gβπ) |
pwsgsum.i | β’ (π β πΌ β π) |
pwsgsum.j | β’ (π β π½ β π) |
pwsgsum.r | β’ (π β π β CMnd) |
pwsgsum.f | β’ ((π β§ (π₯ β πΌ β§ π¦ β π½)) β π β π΅) |
pwsgsum.w | β’ (π β (π¦ β π½ β¦ (π₯ β πΌ β¦ π)) finSupp 0 ) |
Ref | Expression |
---|---|
pwsgsum | β’ (π β (π Ξ£g (π¦ β π½ β¦ (π₯ β πΌ β¦ π))) = (π₯ β πΌ β¦ (π Ξ£g (π¦ β π½ β¦ π)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsgsum.r | . . . 4 β’ (π β π β CMnd) | |
2 | pwsgsum.i | . . . 4 β’ (π β πΌ β π) | |
3 | pwsgsum.y | . . . . 5 β’ π = (π βs πΌ) | |
4 | eqid 2732 | . . . . 5 β’ (Scalarβπ ) = (Scalarβπ ) | |
5 | 3, 4 | pwsval 17434 | . . . 4 β’ ((π β CMnd β§ πΌ β π) β π = ((Scalarβπ )Xs(πΌ Γ {π }))) |
6 | 1, 2, 5 | syl2anc 584 | . . 3 β’ (π β π = ((Scalarβπ )Xs(πΌ Γ {π }))) |
7 | 6 | oveq1d 7426 | . 2 β’ (π β (π Ξ£g (π¦ β π½ β¦ (π₯ β πΌ β¦ π))) = (((Scalarβπ )Xs(πΌ Γ {π })) Ξ£g (π¦ β π½ β¦ (π₯ β πΌ β¦ π)))) |
8 | fconstmpt 5738 | . . . 4 β’ (πΌ Γ {π }) = (π₯ β πΌ β¦ π ) | |
9 | 8 | oveq2i 7422 | . . 3 β’ ((Scalarβπ )Xs(πΌ Γ {π })) = ((Scalarβπ )Xs(π₯ β πΌ β¦ π )) |
10 | pwsgsum.b | . . 3 β’ π΅ = (Baseβπ ) | |
11 | eqid 2732 | . . 3 β’ (0gβ((Scalarβπ )Xs(πΌ Γ {π }))) = (0gβ((Scalarβπ )Xs(πΌ Γ {π }))) | |
12 | pwsgsum.j | . . 3 β’ (π β π½ β π) | |
13 | fvexd 6906 | . . 3 β’ (π β (Scalarβπ ) β V) | |
14 | 1 | adantr 481 | . . 3 β’ ((π β§ π₯ β πΌ) β π β CMnd) |
15 | pwsgsum.f | . . 3 β’ ((π β§ (π₯ β πΌ β§ π¦ β π½)) β π β π΅) | |
16 | pwsgsum.w | . . . 4 β’ (π β (π¦ β π½ β¦ (π₯ β πΌ β¦ π)) finSupp 0 ) | |
17 | pwsgsum.z | . . . . 5 β’ 0 = (0gβπ) | |
18 | 6 | fveq2d 6895 | . . . . 5 β’ (π β (0gβπ) = (0gβ((Scalarβπ )Xs(πΌ Γ {π })))) |
19 | 17, 18 | eqtrid 2784 | . . . 4 β’ (π β 0 = (0gβ((Scalarβπ )Xs(πΌ Γ {π })))) |
20 | 16, 19 | breqtrd 5174 | . . 3 β’ (π β (π¦ β π½ β¦ (π₯ β πΌ β¦ π)) finSupp (0gβ((Scalarβπ )Xs(πΌ Γ {π })))) |
21 | 9, 10, 11, 2, 12, 13, 14, 15, 20 | prdsgsum 19851 | . 2 β’ (π β (((Scalarβπ )Xs(πΌ Γ {π })) Ξ£g (π¦ β π½ β¦ (π₯ β πΌ β¦ π))) = (π₯ β πΌ β¦ (π Ξ£g (π¦ β π½ β¦ π)))) |
22 | 7, 21 | eqtrd 2772 | 1 β’ (π β (π Ξ£g (π¦ β π½ β¦ (π₯ β πΌ β¦ π))) = (π₯ β πΌ β¦ (π Ξ£g (π¦ β π½ β¦ π)))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 Vcvv 3474 {csn 4628 class class class wbr 5148 β¦ cmpt 5231 Γ cxp 5674 βcfv 6543 (class class class)co 7411 finSupp cfsupp 9363 Basecbs 17146 Scalarcsca 17202 0gc0g 17387 Ξ£g cgsu 17388 Xscprds 17393 βs cpws 17394 CMndccmn 19650 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-er 8705 df-map 8824 df-ixp 8894 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-fsupp 9364 df-sup 9439 df-oi 9507 df-card 9936 df-pnf 11252 df-mnf 11253 df-xr 11254 df-ltxr 11255 df-le 11256 df-sub 11448 df-neg 11449 df-nn 12215 df-2 12277 df-3 12278 df-4 12279 df-5 12280 df-6 12281 df-7 12282 df-8 12283 df-9 12284 df-n0 12475 df-z 12561 df-dec 12680 df-uz 12825 df-fz 13487 df-fzo 13630 df-seq 13969 df-hash 14293 df-struct 17082 df-slot 17117 df-ndx 17129 df-base 17147 df-plusg 17212 df-mulr 17213 df-sca 17215 df-vsca 17216 df-ip 17217 df-tset 17218 df-ple 17219 df-ds 17221 df-hom 17223 df-cco 17224 df-0g 17389 df-gsum 17390 df-prds 17395 df-pws 17397 df-mgm 18563 df-sgrp 18612 df-mnd 18628 df-mhm 18673 df-cntz 19183 df-cmn 19652 |
This theorem is referenced by: frlmgsum 21333 plypf1 25733 evls1fpws 32691 evlsvvval 41217 |
Copyright terms: Public domain | W3C validator |