| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsgsum | Structured version Visualization version GIF version | ||
| Description: Finite commutative sums in a power structure are taken componentwise. (Contributed by Stefan O'Rear, 1-Feb-2015.) (Revised by Mario Carneiro, 3-Jul-2015.) (Revised by AV, 9-Jun-2019.) |
| Ref | Expression |
|---|---|
| pwsgsum.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsgsum.b | ⊢ 𝐵 = (Base‘𝑅) |
| pwsgsum.z | ⊢ 0 = (0g‘𝑌) |
| pwsgsum.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| pwsgsum.j | ⊢ (𝜑 → 𝐽 ∈ 𝑊) |
| pwsgsum.r | ⊢ (𝜑 → 𝑅 ∈ CMnd) |
| pwsgsum.f | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) |
| pwsgsum.w | ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) |
| Ref | Expression |
|---|---|
| pwsgsum | ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsgsum.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CMnd) | |
| 2 | pwsgsum.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 3 | pwsgsum.y | . . . . 5 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 4 | eqid 2729 | . . . . 5 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 5 | 3, 4 | pwsval 17390 | . . . 4 ⊢ ((𝑅 ∈ CMnd ∧ 𝐼 ∈ 𝑉) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 6 | 1, 2, 5 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 7 | 6 | oveq1d 7364 | . 2 ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)))) |
| 8 | fconstmpt 5681 | . . . 4 ⊢ (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
| 9 | 8 | oveq2i 7360 | . . 3 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| 10 | pwsgsum.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 11 | eqid 2729 | . . 3 ⊢ (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 12 | pwsgsum.j | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑊) | |
| 13 | fvexd 6837 | . . 3 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | |
| 14 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ CMnd) |
| 15 | pwsgsum.f | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐼 ∧ 𝑦 ∈ 𝐽)) → 𝑈 ∈ 𝐵) | |
| 16 | pwsgsum.w | . . . 4 ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp 0 ) | |
| 17 | pwsgsum.z | . . . . 5 ⊢ 0 = (0g‘𝑌) | |
| 18 | 6 | fveq2d 6826 | . . . . 5 ⊢ (𝜑 → (0g‘𝑌) = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 19 | 17, 18 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → 0 = (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 20 | 16, 19 | breqtrd 5118 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈)) finSupp (0g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 21 | 9, 10, 11, 2, 12, 13, 14, 15, 20 | prdsgsum 19860 | . 2 ⊢ (𝜑 → (((Scalar‘𝑅)Xs(𝐼 × {𝑅})) Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
| 22 | 7, 21 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑌 Σg (𝑦 ∈ 𝐽 ↦ (𝑥 ∈ 𝐼 ↦ 𝑈))) = (𝑥 ∈ 𝐼 ↦ (𝑅 Σg (𝑦 ∈ 𝐽 ↦ 𝑈)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3436 {csn 4577 class class class wbr 5092 ↦ cmpt 5173 × cxp 5617 ‘cfv 6482 (class class class)co 7349 finSupp cfsupp 9251 Basecbs 17120 Scalarcsca 17164 0gc0g 17343 Σg cgsu 17344 Xscprds 17349 ↑s cpws 17350 CMndccmn 19659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-er 8625 df-map 8755 df-ixp 8825 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-struct 17058 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-hom 17185 df-cco 17186 df-0g 17345 df-gsum 17346 df-prds 17351 df-pws 17353 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-cntz 19196 df-cmn 19661 |
| This theorem is referenced by: frlmgsum 21679 evls1fpws 22254 plypf1 26115 extdgfialglem2 33660 evlsvvval 42540 |
| Copyright terms: Public domain | W3C validator |