MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsvscafval Structured version   Visualization version   GIF version

Theorem pwsvscafval 16759
Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsvscaval.y 𝑌 = (𝑅s 𝐼)
pwsvscaval.b 𝐵 = (Base‘𝑌)
pwsvscaval.s · = ( ·𝑠𝑅)
pwsvscaval.t = ( ·𝑠𝑌)
pwsvscaval.f 𝐹 = (Scalar‘𝑅)
pwsvscaval.k 𝐾 = (Base‘𝐹)
pwsvscaval.r (𝜑𝑅𝑉)
pwsvscaval.i (𝜑𝐼𝑊)
pwsvscaval.a (𝜑𝐴𝐾)
pwsvscaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
pwsvscafval (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))

Proof of Theorem pwsvscafval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsvscaval.t . . . 4 = ( ·𝑠𝑌)
2 pwsvscaval.r . . . . . 6 (𝜑𝑅𝑉)
3 pwsvscaval.i . . . . . 6 (𝜑𝐼𝑊)
4 pwsvscaval.y . . . . . . 7 𝑌 = (𝑅s 𝐼)
5 pwsvscaval.f . . . . . . 7 𝐹 = (Scalar‘𝑅)
64, 5pwsval 16751 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))
72, 3, 6syl2anc 586 . . . . 5 (𝜑𝑌 = (𝐹Xs(𝐼 × {𝑅})))
87fveq2d 6667 . . . 4 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))))
91, 8syl5eq 2866 . . 3 (𝜑 = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))))
109oveqd 7165 . 2 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋))
11 eqid 2819 . . 3 (𝐹Xs(𝐼 × {𝑅})) = (𝐹Xs(𝐼 × {𝑅}))
12 eqid 2819 . . 3 (Base‘(𝐹Xs(𝐼 × {𝑅}))) = (Base‘(𝐹Xs(𝐼 × {𝑅})))
13 eqid 2819 . . 3 ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))
14 pwsvscaval.k . . 3 𝐾 = (Base‘𝐹)
155fvexi 6677 . . . 4 𝐹 ∈ V
1615a1i 11 . . 3 (𝜑𝐹 ∈ V)
17 fnconstg 6560 . . . 4 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
182, 17syl 17 . . 3 (𝜑 → (𝐼 × {𝑅}) Fn 𝐼)
19 pwsvscaval.a . . 3 (𝜑𝐴𝐾)
20 pwsvscaval.x . . . 4 (𝜑𝑋𝐵)
21 pwsvscaval.b . . . . 5 𝐵 = (Base‘𝑌)
227fveq2d 6667 . . . . 5 (𝜑 → (Base‘𝑌) = (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2321, 22syl5eq 2866 . . . 4 (𝜑𝐵 = (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2420, 23eleqtrd 2913 . . 3 (𝜑𝑋 ∈ (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2511, 12, 13, 14, 16, 3, 18, 19, 24prdsvscaval 16744 . 2 (𝜑 → (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋) = (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))))
26 fvconst2g 6957 . . . . . . . 8 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
272, 26sylan 582 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2827fveq2d 6667 . . . . . 6 ((𝜑𝑥𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = ( ·𝑠𝑅))
29 pwsvscaval.s . . . . . 6 · = ( ·𝑠𝑅)
3028, 29syl6eqr 2872 . . . . 5 ((𝜑𝑥𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = · )
3130oveqd 7165 . . . 4 ((𝜑𝑥𝐼) → (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥)) = (𝐴 · (𝑋𝑥)))
3231mpteq2dva 5152 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))) = (𝑥𝐼 ↦ (𝐴 · (𝑋𝑥))))
3319adantr 483 . . . 4 ((𝜑𝑥𝐼) → 𝐴𝐾)
34 fvexd 6678 . . . 4 ((𝜑𝑥𝐼) → (𝑋𝑥) ∈ V)
35 fconstmpt 5607 . . . . 5 (𝐼 × {𝐴}) = (𝑥𝐼𝐴)
3635a1i 11 . . . 4 (𝜑 → (𝐼 × {𝐴}) = (𝑥𝐼𝐴))
37 eqid 2819 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
384, 37, 21, 2, 3, 20pwselbas 16754 . . . . 5 (𝜑𝑋:𝐼⟶(Base‘𝑅))
3938feqmptd 6726 . . . 4 (𝜑𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
403, 33, 34, 36, 39offval2 7418 . . 3 (𝜑 → ((𝐼 × {𝐴}) ∘f · 𝑋) = (𝑥𝐼 ↦ (𝐴 · (𝑋𝑥))))
4132, 40eqtr4d 2857 . 2 (𝜑 → (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))) = ((𝐼 × {𝐴}) ∘f · 𝑋))
4210, 25, 413eqtrd 2858 1 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1530  wcel 2107  Vcvv 3493  {csn 4559  cmpt 5137   × cxp 5546   Fn wfn 6343  cfv 6348  (class class class)co 7148  f cof 7399  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561  Xscprds 16711  s cpws 16712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-of 7401  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-map 8400  df-ixp 8454  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-3 11693  df-4 11694  df-5 11695  df-6 11696  df-7 11697  df-8 11698  df-9 11699  df-n0 11890  df-z 11974  df-dec 12091  df-uz 12236  df-fz 12885  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-prds 16713  df-pws 16715
This theorem is referenced by:  pwsvscaval  16760  pwsdiaglmhm  19821  pwssplit3  19825  frlmvscafval  20902
  Copyright terms: Public domain W3C validator