![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsvscafval | Structured version Visualization version GIF version |
Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsvscaval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsvscaval.b | ⊢ 𝐵 = (Base‘𝑌) |
pwsvscaval.s | ⊢ · = ( ·𝑠 ‘𝑅) |
pwsvscaval.t | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
pwsvscaval.f | ⊢ 𝐹 = (Scalar‘𝑅) |
pwsvscaval.k | ⊢ 𝐾 = (Base‘𝐹) |
pwsvscaval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
pwsvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
pwsvscaval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
pwsvscaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
pwsvscafval | ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsvscaval.t | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
2 | pwsvscaval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
3 | pwsvscaval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
4 | pwsvscaval.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
5 | pwsvscaval.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑅) | |
6 | 4, 5 | pwsval 16506 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
7 | 2, 3, 6 | syl2anc 579 | . . . . 5 ⊢ (𝜑 → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
8 | 7 | fveq2d 6441 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))) |
9 | 1, 8 | syl5eq 2873 | . . 3 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))) |
10 | 9 | oveqd 6927 | . 2 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋)) |
11 | eqid 2825 | . . 3 ⊢ (𝐹Xs(𝐼 × {𝑅})) = (𝐹Xs(𝐼 × {𝑅})) | |
12 | eqid 2825 | . . 3 ⊢ (Base‘(𝐹Xs(𝐼 × {𝑅}))) = (Base‘(𝐹Xs(𝐼 × {𝑅}))) | |
13 | eqid 2825 | . . 3 ⊢ ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) | |
14 | pwsvscaval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
15 | 5 | fvexi 6451 | . . . 4 ⊢ 𝐹 ∈ V |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
17 | fnconstg 6334 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
18 | 2, 17 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
19 | pwsvscaval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
20 | pwsvscaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | pwsvscaval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
22 | 7 | fveq2d 6441 | . . . . 5 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
23 | 21, 22 | syl5eq 2873 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
24 | 20, 23 | eleqtrd 2908 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
25 | 11, 12, 13, 14, 16, 3, 18, 19, 24 | prdsvscaval 16499 | . 2 ⊢ (𝜑 → (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋) = (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥)))) |
26 | fvconst2g 6728 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
27 | 2, 26 | sylan 575 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
28 | 27 | fveq2d 6441 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = ( ·𝑠 ‘𝑅)) |
29 | pwsvscaval.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑅) | |
30 | 28, 29 | syl6eqr 2879 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = · ) |
31 | 30 | oveqd 6927 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥)) = (𝐴 · (𝑋‘𝑥))) |
32 | 31 | mpteq2dva 4969 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝐴 · (𝑋‘𝑥)))) |
33 | 19 | adantr 474 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ 𝐾) |
34 | fvexd 6452 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ V) | |
35 | fconstmpt 5402 | . . . . 5 ⊢ (𝐼 × {𝐴}) = (𝑥 ∈ 𝐼 ↦ 𝐴) | |
36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝐴}) = (𝑥 ∈ 𝐼 ↦ 𝐴)) |
37 | eqid 2825 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
38 | 4, 37, 21, 2, 3, 20 | pwselbas 16509 | . . . . 5 ⊢ (𝜑 → 𝑋:𝐼⟶(Base‘𝑅)) |
39 | 38 | feqmptd 6500 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐼 ↦ (𝑋‘𝑥))) |
40 | 3, 33, 34, 36, 39 | offval2 7179 | . . 3 ⊢ (𝜑 → ((𝐼 × {𝐴}) ∘𝑓 · 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝐴 · (𝑋‘𝑥)))) |
41 | 32, 40 | eqtr4d 2864 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥))) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋)) |
42 | 10, 25, 41 | 3eqtrd 2865 | 1 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘𝑓 · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1656 ∈ wcel 2164 Vcvv 3414 {csn 4399 ↦ cmpt 4954 × cxp 5344 Fn wfn 6122 ‘cfv 6127 (class class class)co 6910 ∘𝑓 cof 7160 Basecbs 16229 Scalarcsca 16315 ·𝑠 cvsca 16316 Xscprds 16466 ↑s cpws 16467 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-rep 4996 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-1cn 10317 ax-icn 10318 ax-addcl 10319 ax-addrcl 10320 ax-mulcl 10321 ax-mulrcl 10322 ax-mulcom 10323 ax-addass 10324 ax-mulass 10325 ax-distr 10326 ax-i2m1 10327 ax-1ne0 10328 ax-1rid 10329 ax-rnegex 10330 ax-rrecex 10331 ax-cnre 10332 ax-pre-lttri 10333 ax-pre-lttrn 10334 ax-pre-ltadd 10335 ax-pre-mulgt0 10336 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-reu 3124 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-pss 3814 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-tp 4404 df-op 4406 df-uni 4661 df-int 4700 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-tr 4978 df-id 5252 df-eprel 5257 df-po 5265 df-so 5266 df-fr 5305 df-we 5307 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-pred 5924 df-ord 5970 df-on 5971 df-lim 5972 df-suc 5973 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-riota 6871 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-of 7162 df-om 7332 df-1st 7433 df-2nd 7434 df-wrecs 7677 df-recs 7739 df-rdg 7777 df-1o 7831 df-oadd 7835 df-er 8014 df-map 8129 df-ixp 8182 df-en 8229 df-dom 8230 df-sdom 8231 df-fin 8232 df-sup 8623 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-sub 10594 df-neg 10595 df-nn 11358 df-2 11421 df-3 11422 df-4 11423 df-5 11424 df-6 11425 df-7 11426 df-8 11427 df-9 11428 df-n0 11626 df-z 11712 df-dec 11829 df-uz 11976 df-fz 12627 df-struct 16231 df-ndx 16232 df-slot 16233 df-base 16235 df-plusg 16325 df-mulr 16326 df-sca 16328 df-vsca 16329 df-ip 16330 df-tset 16331 df-ple 16332 df-ds 16334 df-hom 16336 df-cco 16337 df-prds 16468 df-pws 16470 |
This theorem is referenced by: pwsvscaval 16515 pwsdiaglmhm 19423 pwssplit3 19427 frlmvscafval 20479 |
Copyright terms: Public domain | W3C validator |