![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsvscafval | Structured version Visualization version GIF version |
Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsvscaval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsvscaval.b | ⊢ 𝐵 = (Base‘𝑌) |
pwsvscaval.s | ⊢ · = ( ·𝑠 ‘𝑅) |
pwsvscaval.t | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
pwsvscaval.f | ⊢ 𝐹 = (Scalar‘𝑅) |
pwsvscaval.k | ⊢ 𝐾 = (Base‘𝐹) |
pwsvscaval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
pwsvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
pwsvscaval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
pwsvscaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
pwsvscafval | ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsvscaval.t | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
2 | pwsvscaval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
3 | pwsvscaval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
4 | pwsvscaval.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
5 | pwsvscaval.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑅) | |
6 | 4, 5 | pwsval 17427 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
7 | 2, 3, 6 | syl2anc 585 | . . . . 5 ⊢ (𝜑 → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
8 | 7 | fveq2d 6891 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))) |
9 | 1, 8 | eqtrid 2785 | . . 3 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))) |
10 | 9 | oveqd 7420 | . 2 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋)) |
11 | eqid 2733 | . . 3 ⊢ (𝐹Xs(𝐼 × {𝑅})) = (𝐹Xs(𝐼 × {𝑅})) | |
12 | eqid 2733 | . . 3 ⊢ (Base‘(𝐹Xs(𝐼 × {𝑅}))) = (Base‘(𝐹Xs(𝐼 × {𝑅}))) | |
13 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) | |
14 | pwsvscaval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
15 | 5 | fvexi 6901 | . . . 4 ⊢ 𝐹 ∈ V |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
17 | fnconstg 6775 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
18 | 2, 17 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
19 | pwsvscaval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
20 | pwsvscaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | pwsvscaval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
22 | 7 | fveq2d 6891 | . . . . 5 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
23 | 21, 22 | eqtrid 2785 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
24 | 20, 23 | eleqtrd 2836 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
25 | 11, 12, 13, 14, 16, 3, 18, 19, 24 | prdsvscaval 17420 | . 2 ⊢ (𝜑 → (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋) = (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥)))) |
26 | fvconst2g 7197 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
27 | 2, 26 | sylan 581 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
28 | 27 | fveq2d 6891 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = ( ·𝑠 ‘𝑅)) |
29 | pwsvscaval.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑅) | |
30 | 28, 29 | eqtr4di 2791 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = · ) |
31 | 30 | oveqd 7420 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥)) = (𝐴 · (𝑋‘𝑥))) |
32 | 31 | mpteq2dva 5246 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝐴 · (𝑋‘𝑥)))) |
33 | 19 | adantr 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ 𝐾) |
34 | fvexd 6902 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ V) | |
35 | fconstmpt 5735 | . . . . 5 ⊢ (𝐼 × {𝐴}) = (𝑥 ∈ 𝐼 ↦ 𝐴) | |
36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝐴}) = (𝑥 ∈ 𝐼 ↦ 𝐴)) |
37 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
38 | 4, 37, 21, 2, 3, 20 | pwselbas 17430 | . . . . 5 ⊢ (𝜑 → 𝑋:𝐼⟶(Base‘𝑅)) |
39 | 38 | feqmptd 6955 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐼 ↦ (𝑋‘𝑥))) |
40 | 3, 33, 34, 36, 39 | offval2 7684 | . . 3 ⊢ (𝜑 → ((𝐼 × {𝐴}) ∘f · 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝐴 · (𝑋‘𝑥)))) |
41 | 32, 40 | eqtr4d 2776 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥))) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
42 | 10, 25, 41 | 3eqtrd 2777 | 1 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3475 {csn 4626 ↦ cmpt 5229 × cxp 5672 Fn wfn 6534 ‘cfv 6539 (class class class)co 7403 ∘f cof 7662 Basecbs 17139 Scalarcsca 17195 ·𝑠 cvsca 17196 Xscprds 17386 ↑s cpws 17387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5283 ax-sep 5297 ax-nul 5304 ax-pow 5361 ax-pr 5425 ax-un 7719 ax-cnex 11161 ax-resscn 11162 ax-1cn 11163 ax-icn 11164 ax-addcl 11165 ax-addrcl 11166 ax-mulcl 11167 ax-mulrcl 11168 ax-mulcom 11169 ax-addass 11170 ax-mulass 11171 ax-distr 11172 ax-i2m1 11173 ax-1ne0 11174 ax-1rid 11175 ax-rnegex 11176 ax-rrecex 11177 ax-cnre 11178 ax-pre-lttri 11179 ax-pre-lttrn 11180 ax-pre-ltadd 11181 ax-pre-mulgt0 11182 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3965 df-nul 4321 df-if 4527 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4907 df-iun 4997 df-br 5147 df-opab 5209 df-mpt 5230 df-tr 5264 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6296 df-ord 6363 df-on 6364 df-lim 6365 df-suc 6366 df-iota 6491 df-fun 6541 df-fn 6542 df-f 6543 df-f1 6544 df-fo 6545 df-f1o 6546 df-fv 6547 df-riota 7359 df-ov 7406 df-oprab 7407 df-mpo 7408 df-of 7664 df-om 7850 df-1st 7969 df-2nd 7970 df-frecs 8260 df-wrecs 8291 df-recs 8365 df-rdg 8404 df-1o 8460 df-er 8698 df-map 8817 df-ixp 8887 df-en 8935 df-dom 8936 df-sdom 8937 df-fin 8938 df-sup 9432 df-pnf 11245 df-mnf 11246 df-xr 11247 df-ltxr 11248 df-le 11249 df-sub 11441 df-neg 11442 df-nn 12208 df-2 12270 df-3 12271 df-4 12272 df-5 12273 df-6 12274 df-7 12275 df-8 12276 df-9 12277 df-n0 12468 df-z 12554 df-dec 12673 df-uz 12818 df-fz 13480 df-struct 17075 df-slot 17110 df-ndx 17122 df-base 17140 df-plusg 17205 df-mulr 17206 df-sca 17208 df-vsca 17209 df-ip 17210 df-tset 17211 df-ple 17212 df-ds 17214 df-hom 17216 df-cco 17217 df-prds 17388 df-pws 17390 |
This theorem is referenced by: pwsvscaval 17436 pwsdiaglmhm 20655 pwssplit3 20659 frlmvscafval 21304 mhphf2 41119 |
Copyright terms: Public domain | W3C validator |