MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsvscafval Structured version   Visualization version   GIF version

Theorem pwsvscafval 17539
Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsvscaval.y 𝑌 = (𝑅s 𝐼)
pwsvscaval.b 𝐵 = (Base‘𝑌)
pwsvscaval.s · = ( ·𝑠𝑅)
pwsvscaval.t = ( ·𝑠𝑌)
pwsvscaval.f 𝐹 = (Scalar‘𝑅)
pwsvscaval.k 𝐾 = (Base‘𝐹)
pwsvscaval.r (𝜑𝑅𝑉)
pwsvscaval.i (𝜑𝐼𝑊)
pwsvscaval.a (𝜑𝐴𝐾)
pwsvscaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
pwsvscafval (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))

Proof of Theorem pwsvscafval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsvscaval.t . . . 4 = ( ·𝑠𝑌)
2 pwsvscaval.r . . . . . 6 (𝜑𝑅𝑉)
3 pwsvscaval.i . . . . . 6 (𝜑𝐼𝑊)
4 pwsvscaval.y . . . . . . 7 𝑌 = (𝑅s 𝐼)
5 pwsvscaval.f . . . . . . 7 𝐹 = (Scalar‘𝑅)
64, 5pwsval 17531 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))
72, 3, 6syl2anc 584 . . . . 5 (𝜑𝑌 = (𝐹Xs(𝐼 × {𝑅})))
87fveq2d 6910 . . . 4 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))))
91, 8eqtrid 2789 . . 3 (𝜑 = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))))
109oveqd 7448 . 2 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋))
11 eqid 2737 . . 3 (𝐹Xs(𝐼 × {𝑅})) = (𝐹Xs(𝐼 × {𝑅}))
12 eqid 2737 . . 3 (Base‘(𝐹Xs(𝐼 × {𝑅}))) = (Base‘(𝐹Xs(𝐼 × {𝑅})))
13 eqid 2737 . . 3 ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))
14 pwsvscaval.k . . 3 𝐾 = (Base‘𝐹)
155fvexi 6920 . . . 4 𝐹 ∈ V
1615a1i 11 . . 3 (𝜑𝐹 ∈ V)
17 fnconstg 6796 . . . 4 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
182, 17syl 17 . . 3 (𝜑 → (𝐼 × {𝑅}) Fn 𝐼)
19 pwsvscaval.a . . 3 (𝜑𝐴𝐾)
20 pwsvscaval.x . . . 4 (𝜑𝑋𝐵)
21 pwsvscaval.b . . . . 5 𝐵 = (Base‘𝑌)
227fveq2d 6910 . . . . 5 (𝜑 → (Base‘𝑌) = (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2321, 22eqtrid 2789 . . . 4 (𝜑𝐵 = (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2420, 23eleqtrd 2843 . . 3 (𝜑𝑋 ∈ (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2511, 12, 13, 14, 16, 3, 18, 19, 24prdsvscaval 17524 . 2 (𝜑 → (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋) = (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))))
26 fvconst2g 7222 . . . . . . . 8 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
272, 26sylan 580 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2827fveq2d 6910 . . . . . 6 ((𝜑𝑥𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = ( ·𝑠𝑅))
29 pwsvscaval.s . . . . . 6 · = ( ·𝑠𝑅)
3028, 29eqtr4di 2795 . . . . 5 ((𝜑𝑥𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = · )
3130oveqd 7448 . . . 4 ((𝜑𝑥𝐼) → (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥)) = (𝐴 · (𝑋𝑥)))
3231mpteq2dva 5242 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))) = (𝑥𝐼 ↦ (𝐴 · (𝑋𝑥))))
3319adantr 480 . . . 4 ((𝜑𝑥𝐼) → 𝐴𝐾)
34 fvexd 6921 . . . 4 ((𝜑𝑥𝐼) → (𝑋𝑥) ∈ V)
35 fconstmpt 5747 . . . . 5 (𝐼 × {𝐴}) = (𝑥𝐼𝐴)
3635a1i 11 . . . 4 (𝜑 → (𝐼 × {𝐴}) = (𝑥𝐼𝐴))
37 eqid 2737 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
384, 37, 21, 2, 3, 20pwselbas 17534 . . . . 5 (𝜑𝑋:𝐼⟶(Base‘𝑅))
3938feqmptd 6977 . . . 4 (𝜑𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
403, 33, 34, 36, 39offval2 7717 . . 3 (𝜑 → ((𝐼 × {𝐴}) ∘f · 𝑋) = (𝑥𝐼 ↦ (𝐴 · (𝑋𝑥))))
4132, 40eqtr4d 2780 . 2 (𝜑 → (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))) = ((𝐼 × {𝐴}) ∘f · 𝑋))
4210, 25, 413eqtrd 2781 1 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  {csn 4626  cmpt 5225   × cxp 5683   Fn wfn 6556  cfv 6561  (class class class)co 7431  f cof 7695  Basecbs 17247  Scalarcsca 17300   ·𝑠 cvsca 17301  Xscprds 17490  s cpws 17491
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-er 8745  df-map 8868  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-struct 17184  df-slot 17219  df-ndx 17231  df-base 17248  df-plusg 17310  df-mulr 17311  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-hom 17321  df-cco 17322  df-prds 17492  df-pws 17494
This theorem is referenced by:  pwsvscaval  17540  pwsdiaglmhm  21056  pwssplit3  21060  frlmvscafval  21786  mhphf2  42608
  Copyright terms: Public domain W3C validator