![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsvscafval | Structured version Visualization version GIF version |
Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsvscaval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsvscaval.b | ⊢ 𝐵 = (Base‘𝑌) |
pwsvscaval.s | ⊢ · = ( ·𝑠 ‘𝑅) |
pwsvscaval.t | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
pwsvscaval.f | ⊢ 𝐹 = (Scalar‘𝑅) |
pwsvscaval.k | ⊢ 𝐾 = (Base‘𝐹) |
pwsvscaval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
pwsvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
pwsvscaval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
pwsvscaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
Ref | Expression |
---|---|
pwsvscafval | ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwsvscaval.t | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
2 | pwsvscaval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
3 | pwsvscaval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
4 | pwsvscaval.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
5 | pwsvscaval.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑅) | |
6 | 4, 5 | pwsval 17368 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
7 | 2, 3, 6 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
8 | 7 | fveq2d 6846 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))) |
9 | 1, 8 | eqtrid 2788 | . . 3 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))) |
10 | 9 | oveqd 7374 | . 2 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋)) |
11 | eqid 2736 | . . 3 ⊢ (𝐹Xs(𝐼 × {𝑅})) = (𝐹Xs(𝐼 × {𝑅})) | |
12 | eqid 2736 | . . 3 ⊢ (Base‘(𝐹Xs(𝐼 × {𝑅}))) = (Base‘(𝐹Xs(𝐼 × {𝑅}))) | |
13 | eqid 2736 | . . 3 ⊢ ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) | |
14 | pwsvscaval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
15 | 5 | fvexi 6856 | . . . 4 ⊢ 𝐹 ∈ V |
16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
17 | fnconstg 6730 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
18 | 2, 17 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
19 | pwsvscaval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
20 | pwsvscaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
21 | pwsvscaval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
22 | 7 | fveq2d 6846 | . . . . 5 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
23 | 21, 22 | eqtrid 2788 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
24 | 20, 23 | eleqtrd 2840 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
25 | 11, 12, 13, 14, 16, 3, 18, 19, 24 | prdsvscaval 17361 | . 2 ⊢ (𝜑 → (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋) = (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥)))) |
26 | fvconst2g 7151 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
27 | 2, 26 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
28 | 27 | fveq2d 6846 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = ( ·𝑠 ‘𝑅)) |
29 | pwsvscaval.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑅) | |
30 | 28, 29 | eqtr4di 2794 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = · ) |
31 | 30 | oveqd 7374 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥)) = (𝐴 · (𝑋‘𝑥))) |
32 | 31 | mpteq2dva 5205 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝐴 · (𝑋‘𝑥)))) |
33 | 19 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ 𝐾) |
34 | fvexd 6857 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ V) | |
35 | fconstmpt 5694 | . . . . 5 ⊢ (𝐼 × {𝐴}) = (𝑥 ∈ 𝐼 ↦ 𝐴) | |
36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝐴}) = (𝑥 ∈ 𝐼 ↦ 𝐴)) |
37 | eqid 2736 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
38 | 4, 37, 21, 2, 3, 20 | pwselbas 17371 | . . . . 5 ⊢ (𝜑 → 𝑋:𝐼⟶(Base‘𝑅)) |
39 | 38 | feqmptd 6910 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐼 ↦ (𝑋‘𝑥))) |
40 | 3, 33, 34, 36, 39 | offval2 7637 | . . 3 ⊢ (𝜑 → ((𝐼 × {𝐴}) ∘f · 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝐴 · (𝑋‘𝑥)))) |
41 | 32, 40 | eqtr4d 2779 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥))) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
42 | 10, 25, 41 | 3eqtrd 2780 | 1 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3445 {csn 4586 ↦ cmpt 5188 × cxp 5631 Fn wfn 6491 ‘cfv 6496 (class class class)co 7357 ∘f cof 7615 Basecbs 17083 Scalarcsca 17136 ·𝑠 cvsca 17137 Xscprds 17327 ↑s cpws 17328 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-er 8648 df-map 8767 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-fz 13425 df-struct 17019 df-slot 17054 df-ndx 17066 df-base 17084 df-plusg 17146 df-mulr 17147 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-hom 17157 df-cco 17158 df-prds 17329 df-pws 17331 |
This theorem is referenced by: pwsvscaval 17377 pwsdiaglmhm 20518 pwssplit3 20522 frlmvscafval 21172 mhphf2 40758 |
Copyright terms: Public domain | W3C validator |