| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsvscafval | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsvscaval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsvscaval.b | ⊢ 𝐵 = (Base‘𝑌) |
| pwsvscaval.s | ⊢ · = ( ·𝑠 ‘𝑅) |
| pwsvscaval.t | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
| pwsvscaval.f | ⊢ 𝐹 = (Scalar‘𝑅) |
| pwsvscaval.k | ⊢ 𝐾 = (Base‘𝐹) |
| pwsvscaval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| pwsvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| pwsvscaval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| pwsvscaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| pwsvscafval | ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsvscaval.t | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
| 2 | pwsvscaval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 3 | pwsvscaval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 4 | pwsvscaval.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 5 | pwsvscaval.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑅) | |
| 6 | 4, 5 | pwsval 17449 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
| 7 | 2, 3, 6 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
| 8 | 7 | fveq2d 6862 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))) |
| 9 | 1, 8 | eqtrid 2776 | . . 3 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))) |
| 10 | 9 | oveqd 7404 | . 2 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋)) |
| 11 | eqid 2729 | . . 3 ⊢ (𝐹Xs(𝐼 × {𝑅})) = (𝐹Xs(𝐼 × {𝑅})) | |
| 12 | eqid 2729 | . . 3 ⊢ (Base‘(𝐹Xs(𝐼 × {𝑅}))) = (Base‘(𝐹Xs(𝐼 × {𝑅}))) | |
| 13 | eqid 2729 | . . 3 ⊢ ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) | |
| 14 | pwsvscaval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 15 | 5 | fvexi 6872 | . . . 4 ⊢ 𝐹 ∈ V |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 17 | fnconstg 6748 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
| 18 | 2, 17 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
| 19 | pwsvscaval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 20 | pwsvscaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 21 | pwsvscaval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
| 22 | 7 | fveq2d 6862 | . . . . 5 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
| 23 | 21, 22 | eqtrid 2776 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
| 24 | 20, 23 | eleqtrd 2830 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
| 25 | 11, 12, 13, 14, 16, 3, 18, 19, 24 | prdsvscaval 17442 | . 2 ⊢ (𝜑 → (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋) = (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥)))) |
| 26 | fvconst2g 7176 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
| 27 | 2, 26 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
| 28 | 27 | fveq2d 6862 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = ( ·𝑠 ‘𝑅)) |
| 29 | pwsvscaval.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑅) | |
| 30 | 28, 29 | eqtr4di 2782 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = · ) |
| 31 | 30 | oveqd 7404 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥)) = (𝐴 · (𝑋‘𝑥))) |
| 32 | 31 | mpteq2dva 5200 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝐴 · (𝑋‘𝑥)))) |
| 33 | 19 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ 𝐾) |
| 34 | fvexd 6873 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ V) | |
| 35 | fconstmpt 5700 | . . . . 5 ⊢ (𝐼 × {𝐴}) = (𝑥 ∈ 𝐼 ↦ 𝐴) | |
| 36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝐴}) = (𝑥 ∈ 𝐼 ↦ 𝐴)) |
| 37 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 38 | 4, 37, 21, 2, 3, 20 | pwselbas 17452 | . . . . 5 ⊢ (𝜑 → 𝑋:𝐼⟶(Base‘𝑅)) |
| 39 | 38 | feqmptd 6929 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐼 ↦ (𝑋‘𝑥))) |
| 40 | 3, 33, 34, 36, 39 | offval2 7673 | . . 3 ⊢ (𝜑 → ((𝐼 × {𝐴}) ∘f · 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝐴 · (𝑋‘𝑥)))) |
| 41 | 32, 40 | eqtr4d 2767 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥))) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| 42 | 10, 25, 41 | 3eqtrd 2768 | 1 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 ↦ cmpt 5188 × cxp 5636 Fn wfn 6506 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 Basecbs 17179 Scalarcsca 17223 ·𝑠 cvsca 17224 Xscprds 17408 ↑s cpws 17409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-prds 17410 df-pws 17412 |
| This theorem is referenced by: pwsvscaval 17458 pwsdiaglmhm 20964 pwssplit3 20968 frlmvscafval 21675 mhphf2 42586 |
| Copyright terms: Public domain | W3C validator |