| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsvscafval | Structured version Visualization version GIF version | ||
| Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsvscaval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsvscaval.b | ⊢ 𝐵 = (Base‘𝑌) |
| pwsvscaval.s | ⊢ · = ( ·𝑠 ‘𝑅) |
| pwsvscaval.t | ⊢ ∙ = ( ·𝑠 ‘𝑌) |
| pwsvscaval.f | ⊢ 𝐹 = (Scalar‘𝑅) |
| pwsvscaval.k | ⊢ 𝐾 = (Base‘𝐹) |
| pwsvscaval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| pwsvscaval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| pwsvscaval.a | ⊢ (𝜑 → 𝐴 ∈ 𝐾) |
| pwsvscaval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| Ref | Expression |
|---|---|
| pwsvscafval | ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwsvscaval.t | . . . 4 ⊢ ∙ = ( ·𝑠 ‘𝑌) | |
| 2 | pwsvscaval.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 3 | pwsvscaval.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 4 | pwsvscaval.y | . . . . . . 7 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 5 | pwsvscaval.f | . . . . . . 7 ⊢ 𝐹 = (Scalar‘𝑅) | |
| 6 | 4, 5 | pwsval 17394 | . . . . . 6 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
| 7 | 2, 3, 6 | syl2anc 584 | . . . . 5 ⊢ (𝜑 → 𝑌 = (𝐹Xs(𝐼 × {𝑅}))) |
| 8 | 7 | fveq2d 6834 | . . . 4 ⊢ (𝜑 → ( ·𝑠 ‘𝑌) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))) |
| 9 | 1, 8 | eqtrid 2780 | . . 3 ⊢ (𝜑 → ∙ = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))) |
| 10 | 9 | oveqd 7371 | . 2 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋)) |
| 11 | eqid 2733 | . . 3 ⊢ (𝐹Xs(𝐼 × {𝑅})) = (𝐹Xs(𝐼 × {𝑅})) | |
| 12 | eqid 2733 | . . 3 ⊢ (Base‘(𝐹Xs(𝐼 × {𝑅}))) = (Base‘(𝐹Xs(𝐼 × {𝑅}))) | |
| 13 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) | |
| 14 | pwsvscaval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 15 | 5 | fvexi 6844 | . . . 4 ⊢ 𝐹 ∈ V |
| 16 | 15 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐹 ∈ V) |
| 17 | fnconstg 6718 | . . . 4 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
| 18 | 2, 17 | syl 17 | . . 3 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
| 19 | pwsvscaval.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝐾) | |
| 20 | pwsvscaval.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 21 | pwsvscaval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑌) | |
| 22 | 7 | fveq2d 6834 | . . . . 5 ⊢ (𝜑 → (Base‘𝑌) = (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
| 23 | 21, 22 | eqtrid 2780 | . . . 4 ⊢ (𝜑 → 𝐵 = (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
| 24 | 20, 23 | eleqtrd 2835 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(𝐹Xs(𝐼 × {𝑅})))) |
| 25 | 11, 12, 13, 14, 16, 3, 18, 19, 24 | prdsvscaval 17387 | . 2 ⊢ (𝜑 → (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋) = (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥)))) |
| 26 | fvconst2g 7144 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
| 27 | 2, 26 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
| 28 | 27 | fveq2d 6834 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = ( ·𝑠 ‘𝑅)) |
| 29 | pwsvscaval.s | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑅) | |
| 30 | 28, 29 | eqtr4di 2786 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = · ) |
| 31 | 30 | oveqd 7371 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥)) = (𝐴 · (𝑋‘𝑥))) |
| 32 | 31 | mpteq2dva 5188 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝐴 · (𝑋‘𝑥)))) |
| 33 | 19 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ 𝐾) |
| 34 | fvexd 6845 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝑋‘𝑥) ∈ V) | |
| 35 | fconstmpt 5683 | . . . . 5 ⊢ (𝐼 × {𝐴}) = (𝑥 ∈ 𝐼 ↦ 𝐴) | |
| 36 | 35 | a1i 11 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝐴}) = (𝑥 ∈ 𝐼 ↦ 𝐴)) |
| 37 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 38 | 4, 37, 21, 2, 3, 20 | pwselbas 17397 | . . . . 5 ⊢ (𝜑 → 𝑋:𝐼⟶(Base‘𝑅)) |
| 39 | 38 | feqmptd 6898 | . . . 4 ⊢ (𝜑 → 𝑋 = (𝑥 ∈ 𝐼 ↦ (𝑋‘𝑥))) |
| 40 | 3, 33, 34, 36, 39 | offval2 7638 | . . 3 ⊢ (𝜑 → ((𝐼 × {𝐴}) ∘f · 𝑋) = (𝑥 ∈ 𝐼 ↦ (𝐴 · (𝑋‘𝑥)))) |
| 41 | 32, 40 | eqtr4d 2771 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋‘𝑥))) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| 42 | 10, 25, 41 | 3eqtrd 2772 | 1 ⊢ (𝜑 → (𝐴 ∙ 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 {csn 4577 ↦ cmpt 5176 × cxp 5619 Fn wfn 6483 ‘cfv 6488 (class class class)co 7354 ∘f cof 7616 Basecbs 17124 Scalarcsca 17168 ·𝑠 cvsca 17169 Xscprds 17353 ↑s cpws 17354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7676 ax-cnex 11071 ax-resscn 11072 ax-1cn 11073 ax-icn 11074 ax-addcl 11075 ax-addrcl 11076 ax-mulcl 11077 ax-mulrcl 11078 ax-mulcom 11079 ax-addass 11080 ax-mulass 11081 ax-distr 11082 ax-i2m1 11083 ax-1ne0 11084 ax-1rid 11085 ax-rnegex 11086 ax-rrecex 11087 ax-cnre 11088 ax-pre-lttri 11089 ax-pre-lttrn 11090 ax-pre-ltadd 11091 ax-pre-mulgt0 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6255 df-ord 6316 df-on 6317 df-lim 6318 df-suc 6319 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 df-riota 7311 df-ov 7357 df-oprab 7358 df-mpo 7359 df-of 7618 df-om 7805 df-1st 7929 df-2nd 7930 df-frecs 8219 df-wrecs 8250 df-recs 8299 df-rdg 8337 df-1o 8393 df-er 8630 df-map 8760 df-ixp 8830 df-en 8878 df-dom 8879 df-sdom 8880 df-fin 8881 df-sup 9335 df-pnf 11157 df-mnf 11158 df-xr 11159 df-ltxr 11160 df-le 11161 df-sub 11355 df-neg 11356 df-nn 12135 df-2 12197 df-3 12198 df-4 12199 df-5 12200 df-6 12201 df-7 12202 df-8 12203 df-9 12204 df-n0 12391 df-z 12478 df-dec 12597 df-uz 12741 df-fz 13412 df-struct 17062 df-slot 17097 df-ndx 17109 df-base 17125 df-plusg 17178 df-mulr 17179 df-sca 17181 df-vsca 17182 df-ip 17183 df-tset 17184 df-ple 17185 df-ds 17187 df-hom 17189 df-cco 17190 df-prds 17355 df-pws 17357 |
| This theorem is referenced by: pwsvscaval 17403 pwsdiaglmhm 20995 pwssplit3 20999 frlmvscafval 21707 mhphf2 42719 |
| Copyright terms: Public domain | W3C validator |