MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsvscafval Structured version   Visualization version   GIF version

Theorem pwsvscafval 17541
Description: Scalar multiplication in a structure power is pointwise. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsvscaval.y 𝑌 = (𝑅s 𝐼)
pwsvscaval.b 𝐵 = (Base‘𝑌)
pwsvscaval.s · = ( ·𝑠𝑅)
pwsvscaval.t = ( ·𝑠𝑌)
pwsvscaval.f 𝐹 = (Scalar‘𝑅)
pwsvscaval.k 𝐾 = (Base‘𝐹)
pwsvscaval.r (𝜑𝑅𝑉)
pwsvscaval.i (𝜑𝐼𝑊)
pwsvscaval.a (𝜑𝐴𝐾)
pwsvscaval.x (𝜑𝑋𝐵)
Assertion
Ref Expression
pwsvscafval (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))

Proof of Theorem pwsvscafval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pwsvscaval.t . . . 4 = ( ·𝑠𝑌)
2 pwsvscaval.r . . . . . 6 (𝜑𝑅𝑉)
3 pwsvscaval.i . . . . . 6 (𝜑𝐼𝑊)
4 pwsvscaval.y . . . . . . 7 𝑌 = (𝑅s 𝐼)
5 pwsvscaval.f . . . . . . 7 𝐹 = (Scalar‘𝑅)
64, 5pwsval 17533 . . . . . 6 ((𝑅𝑉𝐼𝑊) → 𝑌 = (𝐹Xs(𝐼 × {𝑅})))
72, 3, 6syl2anc 584 . . . . 5 (𝜑𝑌 = (𝐹Xs(𝐼 × {𝑅})))
87fveq2d 6911 . . . 4 (𝜑 → ( ·𝑠𝑌) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))))
91, 8eqtrid 2787 . . 3 (𝜑 = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))))
109oveqd 7448 . 2 (𝜑 → (𝐴 𝑋) = (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋))
11 eqid 2735 . . 3 (𝐹Xs(𝐼 × {𝑅})) = (𝐹Xs(𝐼 × {𝑅}))
12 eqid 2735 . . 3 (Base‘(𝐹Xs(𝐼 × {𝑅}))) = (Base‘(𝐹Xs(𝐼 × {𝑅})))
13 eqid 2735 . . 3 ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅}))) = ( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))
14 pwsvscaval.k . . 3 𝐾 = (Base‘𝐹)
155fvexi 6921 . . . 4 𝐹 ∈ V
1615a1i 11 . . 3 (𝜑𝐹 ∈ V)
17 fnconstg 6797 . . . 4 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
182, 17syl 17 . . 3 (𝜑 → (𝐼 × {𝑅}) Fn 𝐼)
19 pwsvscaval.a . . 3 (𝜑𝐴𝐾)
20 pwsvscaval.x . . . 4 (𝜑𝑋𝐵)
21 pwsvscaval.b . . . . 5 𝐵 = (Base‘𝑌)
227fveq2d 6911 . . . . 5 (𝜑 → (Base‘𝑌) = (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2321, 22eqtrid 2787 . . . 4 (𝜑𝐵 = (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2420, 23eleqtrd 2841 . . 3 (𝜑𝑋 ∈ (Base‘(𝐹Xs(𝐼 × {𝑅}))))
2511, 12, 13, 14, 16, 3, 18, 19, 24prdsvscaval 17526 . 2 (𝜑 → (𝐴( ·𝑠 ‘(𝐹Xs(𝐼 × {𝑅})))𝑋) = (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))))
26 fvconst2g 7222 . . . . . . . 8 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
272, 26sylan 580 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2827fveq2d 6911 . . . . . 6 ((𝜑𝑥𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = ( ·𝑠𝑅))
29 pwsvscaval.s . . . . . 6 · = ( ·𝑠𝑅)
3028, 29eqtr4di 2793 . . . . 5 ((𝜑𝑥𝐼) → ( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥)) = · )
3130oveqd 7448 . . . 4 ((𝜑𝑥𝐼) → (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥)) = (𝐴 · (𝑋𝑥)))
3231mpteq2dva 5248 . . 3 (𝜑 → (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))) = (𝑥𝐼 ↦ (𝐴 · (𝑋𝑥))))
3319adantr 480 . . . 4 ((𝜑𝑥𝐼) → 𝐴𝐾)
34 fvexd 6922 . . . 4 ((𝜑𝑥𝐼) → (𝑋𝑥) ∈ V)
35 fconstmpt 5751 . . . . 5 (𝐼 × {𝐴}) = (𝑥𝐼𝐴)
3635a1i 11 . . . 4 (𝜑 → (𝐼 × {𝐴}) = (𝑥𝐼𝐴))
37 eqid 2735 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
384, 37, 21, 2, 3, 20pwselbas 17536 . . . . 5 (𝜑𝑋:𝐼⟶(Base‘𝑅))
3938feqmptd 6977 . . . 4 (𝜑𝑋 = (𝑥𝐼 ↦ (𝑋𝑥)))
403, 33, 34, 36, 39offval2 7717 . . 3 (𝜑 → ((𝐼 × {𝐴}) ∘f · 𝑋) = (𝑥𝐼 ↦ (𝐴 · (𝑋𝑥))))
4132, 40eqtr4d 2778 . 2 (𝜑 → (𝑥𝐼 ↦ (𝐴( ·𝑠 ‘((𝐼 × {𝑅})‘𝑥))(𝑋𝑥))) = ((𝐼 × {𝐴}) ∘f · 𝑋))
4210, 25, 413eqtrd 2779 1 (𝜑 → (𝐴 𝑋) = ((𝐼 × {𝐴}) ∘f · 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  Vcvv 3478  {csn 4631  cmpt 5231   × cxp 5687   Fn wfn 6558  cfv 6563  (class class class)co 7431  f cof 7695  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  Xscprds 17492  s cpws 17493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-struct 17181  df-slot 17216  df-ndx 17228  df-base 17246  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-prds 17494  df-pws 17496
This theorem is referenced by:  pwsvscaval  17542  pwsdiaglmhm  21074  pwssplit3  21078  frlmvscafval  21804  mhphf2  42585
  Copyright terms: Public domain W3C validator