![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsplusgval | Structured version Visualization version GIF version |
Description: Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsplusgval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsplusgval.b | ⊢ 𝐵 = (Base‘𝑌) |
pwsplusgval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
pwsplusgval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
pwsplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
pwsplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
pwsplusgval.a | ⊢ + = (+g‘𝑅) |
pwsplusgval.p | ⊢ ✚ = (+g‘𝑌) |
Ref | Expression |
---|---|
pwsplusgval | ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
2 | eqid 2728 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
3 | fvexd 6912 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | |
4 | pwsplusgval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | pwsplusgval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
6 | fnconstg 6785 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
8 | pwsplusgval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
9 | pwsplusgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
10 | pwsplusgval.y | . . . . . . . . 9 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
11 | eqid 2728 | . . . . . . . . 9 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
12 | 10, 11 | pwsval 17467 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
13 | 5, 4, 12 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
14 | 13 | fveq2d 6901 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
15 | 9, 14 | eqtrid 2780 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
16 | 8, 15 | eleqtrd 2831 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
17 | pwsplusgval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
18 | 17, 15 | eleqtrd 2831 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
19 | eqid 2728 | . . . 4 ⊢ (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
20 | 1, 2, 3, 4, 7, 16, 18, 19 | prdsplusgval 17454 | . . 3 ⊢ (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)))) |
21 | fvconst2g 7214 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
22 | 5, 21 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
23 | 22 | fveq2d 6901 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = (+g‘𝑅)) |
24 | pwsplusgval.a | . . . . . 6 ⊢ + = (+g‘𝑅) | |
25 | 23, 24 | eqtr4di 2786 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = + ) |
26 | 25 | oveqd 7437 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
27 | 26 | mpteq2dva 5248 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
28 | 20, 27 | eqtrd 2768 | . 2 ⊢ (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
29 | pwsplusgval.p | . . . 4 ⊢ ✚ = (+g‘𝑌) | |
30 | 13 | fveq2d 6901 | . . . 4 ⊢ (𝜑 → (+g‘𝑌) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
31 | 29, 30 | eqtrid 2780 | . . 3 ⊢ (𝜑 → ✚ = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
32 | 31 | oveqd 7437 | . 2 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺)) |
33 | fvexd 6912 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
34 | fvexd 6912 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ V) | |
35 | eqid 2728 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
36 | 10, 35, 9, 5, 4, 8 | pwselbas 17470 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝑅)) |
37 | 36 | feqmptd 6967 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
38 | 10, 35, 9, 5, 4, 17 | pwselbas 17470 | . . . 4 ⊢ (𝜑 → 𝐺:𝐼⟶(Base‘𝑅)) |
39 | 38 | feqmptd 6967 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝐺‘𝑥))) |
40 | 4, 33, 34, 37, 39 | offval2 7705 | . 2 ⊢ (𝜑 → (𝐹 ∘f + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
41 | 28, 32, 40 | 3eqtr4d 2778 | 1 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 Vcvv 3471 {csn 4629 ↦ cmpt 5231 × cxp 5676 Fn wfn 6543 ‘cfv 6548 (class class class)co 7420 ∘f cof 7683 Basecbs 17179 +gcplusg 17232 Scalarcsca 17235 Xscprds 17426 ↑s cpws 17427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-frecs 8286 df-wrecs 8317 df-recs 8391 df-rdg 8430 df-1o 8486 df-er 8724 df-map 8846 df-ixp 8916 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9465 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-2 12305 df-3 12306 df-4 12307 df-5 12308 df-6 12309 df-7 12310 df-8 12311 df-9 12312 df-n0 12503 df-z 12589 df-dec 12708 df-uz 12853 df-fz 13517 df-struct 17115 df-slot 17150 df-ndx 17162 df-base 17180 df-plusg 17245 df-mulr 17246 df-sca 17248 df-vsca 17249 df-ip 17250 df-tset 17251 df-ple 17252 df-ds 17254 df-hom 17256 df-cco 17257 df-prds 17428 df-pws 17430 |
This theorem is referenced by: pwsdiagmhm 18782 pwsco1mhm 18783 pwsco2mhm 18784 pwssub 19009 pwssplit2 20944 frlmplusgval 21697 psrgrp 21898 mpfaddcl 22050 mpfind 22052 evl1addd 22259 pf1addcl 22271 ply1rem 26099 psrmnd 41775 evlsaddval 41801 evladdval 41808 |
Copyright terms: Public domain | W3C validator |