Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pwsplusgval | Structured version Visualization version GIF version |
Description: Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsplusgval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsplusgval.b | ⊢ 𝐵 = (Base‘𝑌) |
pwsplusgval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
pwsplusgval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
pwsplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
pwsplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
pwsplusgval.a | ⊢ + = (+g‘𝑅) |
pwsplusgval.p | ⊢ ✚ = (+g‘𝑌) |
Ref | Expression |
---|---|
pwsplusgval | ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
2 | eqid 2738 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
3 | fvexd 6771 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | |
4 | pwsplusgval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | pwsplusgval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
6 | fnconstg 6646 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
8 | pwsplusgval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
9 | pwsplusgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
10 | pwsplusgval.y | . . . . . . . . 9 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
11 | eqid 2738 | . . . . . . . . 9 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
12 | 10, 11 | pwsval 17114 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
13 | 5, 4, 12 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
14 | 13 | fveq2d 6760 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
15 | 9, 14 | eqtrid 2790 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
16 | 8, 15 | eleqtrd 2841 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
17 | pwsplusgval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
18 | 17, 15 | eleqtrd 2841 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
19 | eqid 2738 | . . . 4 ⊢ (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
20 | 1, 2, 3, 4, 7, 16, 18, 19 | prdsplusgval 17101 | . . 3 ⊢ (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)))) |
21 | fvconst2g 7059 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
22 | 5, 21 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
23 | 22 | fveq2d 6760 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = (+g‘𝑅)) |
24 | pwsplusgval.a | . . . . . 6 ⊢ + = (+g‘𝑅) | |
25 | 23, 24 | eqtr4di 2797 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = + ) |
26 | 25 | oveqd 7272 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
27 | 26 | mpteq2dva 5170 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
28 | 20, 27 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
29 | pwsplusgval.p | . . . 4 ⊢ ✚ = (+g‘𝑌) | |
30 | 13 | fveq2d 6760 | . . . 4 ⊢ (𝜑 → (+g‘𝑌) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
31 | 29, 30 | eqtrid 2790 | . . 3 ⊢ (𝜑 → ✚ = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
32 | 31 | oveqd 7272 | . 2 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺)) |
33 | fvexd 6771 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
34 | fvexd 6771 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ V) | |
35 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
36 | 10, 35, 9, 5, 4, 8 | pwselbas 17117 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝑅)) |
37 | 36 | feqmptd 6819 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
38 | 10, 35, 9, 5, 4, 17 | pwselbas 17117 | . . . 4 ⊢ (𝜑 → 𝐺:𝐼⟶(Base‘𝑅)) |
39 | 38 | feqmptd 6819 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝐺‘𝑥))) |
40 | 4, 33, 34, 37, 39 | offval2 7531 | . 2 ⊢ (𝜑 → (𝐹 ∘f + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
41 | 28, 32, 40 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 {csn 4558 ↦ cmpt 5153 × cxp 5578 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 Basecbs 16840 +gcplusg 16888 Scalarcsca 16891 Xscprds 17073 ↑s cpws 17074 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-prds 17075 df-pws 17077 |
This theorem is referenced by: pwsdiagmhm 18384 pwsco1mhm 18385 pwsco2mhm 18386 pwssub 18604 pwssplit2 20237 frlmplusgval 20881 mpfaddcl 21225 mpfind 21227 evl1addd 21417 pf1addcl 21429 ply1rem 25233 evlsaddval 40200 |
Copyright terms: Public domain | W3C validator |