MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsplusgval Structured version   Visualization version   GIF version

Theorem pwsplusgval 17201
Description: Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsplusgval.y 𝑌 = (𝑅s 𝐼)
pwsplusgval.b 𝐵 = (Base‘𝑌)
pwsplusgval.r (𝜑𝑅𝑉)
pwsplusgval.i (𝜑𝐼𝑊)
pwsplusgval.f (𝜑𝐹𝐵)
pwsplusgval.g (𝜑𝐺𝐵)
pwsplusgval.a + = (+g𝑅)
pwsplusgval.p = (+g𝑌)
Assertion
Ref Expression
pwsplusgval (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))

Proof of Theorem pwsplusgval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2738 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 fvexd 6789 . . . 4 (𝜑 → (Scalar‘𝑅) ∈ V)
4 pwsplusgval.i . . . 4 (𝜑𝐼𝑊)
5 pwsplusgval.r . . . . 5 (𝜑𝑅𝑉)
6 fnconstg 6662 . . . . 5 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
75, 6syl 17 . . . 4 (𝜑 → (𝐼 × {𝑅}) Fn 𝐼)
8 pwsplusgval.f . . . . 5 (𝜑𝐹𝐵)
9 pwsplusgval.b . . . . . 6 𝐵 = (Base‘𝑌)
10 pwsplusgval.y . . . . . . . . 9 𝑌 = (𝑅s 𝐼)
11 eqid 2738 . . . . . . . . 9 (Scalar‘𝑅) = (Scalar‘𝑅)
1210, 11pwsval 17197 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
135, 4, 12syl2anc 584 . . . . . . 7 (𝜑𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6778 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
159, 14eqtrid 2790 . . . . 5 (𝜑𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
168, 15eleqtrd 2841 . . . 4 (𝜑𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
17 pwsplusgval.g . . . . 5 (𝜑𝐺𝐵)
1817, 15eleqtrd 2841 . . . 4 (𝜑𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
19 eqid 2738 . . . 4 (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
201, 2, 3, 4, 7, 16, 18, 19prdsplusgval 17184 . . 3 (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))))
21 fvconst2g 7077 . . . . . . . 8 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
225, 21sylan 580 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2322fveq2d 6778 . . . . . 6 ((𝜑𝑥𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = (+g𝑅))
24 pwsplusgval.a . . . . . 6 + = (+g𝑅)
2523, 24eqtr4di 2796 . . . . 5 ((𝜑𝑥𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = + )
2625oveqd 7292 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥)) = ((𝐹𝑥) + (𝐺𝑥)))
2726mpteq2dva 5174 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))))
2820, 27eqtrd 2778 . 2 (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))))
29 pwsplusgval.p . . . 4 = (+g𝑌)
3013fveq2d 6778 . . . 4 (𝜑 → (+g𝑌) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3129, 30eqtrid 2790 . . 3 (𝜑 = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3231oveqd 7292 . 2 (𝜑 → (𝐹 𝐺) = (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺))
33 fvexd 6789 . . 3 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ V)
34 fvexd 6789 . . 3 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ V)
35 eqid 2738 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3610, 35, 9, 5, 4, 8pwselbas 17200 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝑅))
3736feqmptd 6837 . . 3 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
3810, 35, 9, 5, 4, 17pwselbas 17200 . . . 4 (𝜑𝐺:𝐼⟶(Base‘𝑅))
3938feqmptd 6837 . . 3 (𝜑𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
404, 33, 34, 37, 39offval2 7553 . 2 (𝜑 → (𝐹f + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))))
4128, 32, 403eqtr4d 2788 1 (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  {csn 4561  cmpt 5157   × cxp 5587   Fn wfn 6428  cfv 6433  (class class class)co 7275  f cof 7531  Basecbs 16912  +gcplusg 16962  Scalarcsca 16965  Xscprds 17156  s cpws 17157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-prds 17158  df-pws 17160
This theorem is referenced by:  pwsdiagmhm  18469  pwsco1mhm  18470  pwsco2mhm  18471  pwssub  18689  pwssplit2  20322  frlmplusgval  20971  mpfaddcl  21315  mpfind  21317  evl1addd  21507  pf1addcl  21519  ply1rem  25328  evlsaddval  40277
  Copyright terms: Public domain W3C validator