MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsplusgval Structured version   Visualization version   GIF version

Theorem pwsplusgval 16751
Description: Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsplusgval.y 𝑌 = (𝑅s 𝐼)
pwsplusgval.b 𝐵 = (Base‘𝑌)
pwsplusgval.r (𝜑𝑅𝑉)
pwsplusgval.i (𝜑𝐼𝑊)
pwsplusgval.f (𝜑𝐹𝐵)
pwsplusgval.g (𝜑𝐺𝐵)
pwsplusgval.a + = (+g𝑅)
pwsplusgval.p = (+g𝑌)
Assertion
Ref Expression
pwsplusgval (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))

Proof of Theorem pwsplusgval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2818 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2818 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 fvexd 6678 . . . 4 (𝜑 → (Scalar‘𝑅) ∈ V)
4 pwsplusgval.i . . . 4 (𝜑𝐼𝑊)
5 pwsplusgval.r . . . . 5 (𝜑𝑅𝑉)
6 fnconstg 6560 . . . . 5 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
75, 6syl 17 . . . 4 (𝜑 → (𝐼 × {𝑅}) Fn 𝐼)
8 pwsplusgval.f . . . . 5 (𝜑𝐹𝐵)
9 pwsplusgval.b . . . . . 6 𝐵 = (Base‘𝑌)
10 pwsplusgval.y . . . . . . . . 9 𝑌 = (𝑅s 𝐼)
11 eqid 2818 . . . . . . . . 9 (Scalar‘𝑅) = (Scalar‘𝑅)
1210, 11pwsval 16747 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
135, 4, 12syl2anc 584 . . . . . . 7 (𝜑𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6667 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
159, 14syl5eq 2865 . . . . 5 (𝜑𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
168, 15eleqtrd 2912 . . . 4 (𝜑𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
17 pwsplusgval.g . . . . 5 (𝜑𝐺𝐵)
1817, 15eleqtrd 2912 . . . 4 (𝜑𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
19 eqid 2818 . . . 4 (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
201, 2, 3, 4, 7, 16, 18, 19prdsplusgval 16734 . . 3 (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))))
21 fvconst2g 6956 . . . . . . . 8 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
225, 21sylan 580 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2322fveq2d 6667 . . . . . 6 ((𝜑𝑥𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = (+g𝑅))
24 pwsplusgval.a . . . . . 6 + = (+g𝑅)
2523, 24syl6eqr 2871 . . . . 5 ((𝜑𝑥𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = + )
2625oveqd 7162 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥)) = ((𝐹𝑥) + (𝐺𝑥)))
2726mpteq2dva 5152 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))))
2820, 27eqtrd 2853 . 2 (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))))
29 pwsplusgval.p . . . 4 = (+g𝑌)
3013fveq2d 6667 . . . 4 (𝜑 → (+g𝑌) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3129, 30syl5eq 2865 . . 3 (𝜑 = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3231oveqd 7162 . 2 (𝜑 → (𝐹 𝐺) = (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺))
33 fvexd 6678 . . 3 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ V)
34 fvexd 6678 . . 3 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ V)
35 eqid 2818 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3610, 35, 9, 5, 4, 8pwselbas 16750 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝑅))
3736feqmptd 6726 . . 3 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
3810, 35, 9, 5, 4, 17pwselbas 16750 . . . 4 (𝜑𝐺:𝐼⟶(Base‘𝑅))
3938feqmptd 6726 . . 3 (𝜑𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
404, 33, 34, 37, 39offval2 7415 . 2 (𝜑 → (𝐹f + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))))
4128, 32, 403eqtr4d 2863 1 (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  {csn 4557  cmpt 5137   × cxp 5546   Fn wfn 6343  cfv 6348  (class class class)co 7145  f cof 7396  Basecbs 16471  +gcplusg 16553  Scalarcsca 16556  Xscprds 16707  s cpws 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-of 7398  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-hom 16577  df-cco 16578  df-prds 16709  df-pws 16711
This theorem is referenced by:  pwsdiagmhm  17983  pwsco1mhm  17984  pwsco2mhm  17985  pwssub  18151  pwssplit2  19761  mpfaddcl  20246  mpfind  20248  evl1addd  20432  pf1addcl  20444  frlmplusgval  20836  ply1rem  24684
  Copyright terms: Public domain W3C validator