| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsplusgval | Structured version Visualization version GIF version | ||
| Description: Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsplusgval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsplusgval.b | ⊢ 𝐵 = (Base‘𝑌) |
| pwsplusgval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| pwsplusgval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| pwsplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| pwsplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| pwsplusgval.a | ⊢ + = (+g‘𝑅) |
| pwsplusgval.p | ⊢ ✚ = (+g‘𝑌) |
| Ref | Expression |
|---|---|
| pwsplusgval | ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 2 | eqid 2731 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 3 | fvexd 6837 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | |
| 4 | pwsplusgval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | pwsplusgval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 6 | fnconstg 6711 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
| 8 | pwsplusgval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 9 | pwsplusgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
| 10 | pwsplusgval.y | . . . . . . . . 9 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 11 | eqid 2731 | . . . . . . . . 9 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 12 | 10, 11 | pwsval 17387 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 13 | 5, 4, 12 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 14 | 13 | fveq2d 6826 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 15 | 9, 14 | eqtrid 2778 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 16 | 8, 15 | eleqtrd 2833 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 17 | pwsplusgval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 18 | 17, 15 | eleqtrd 2833 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 19 | eqid 2731 | . . . 4 ⊢ (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 20 | 1, 2, 3, 4, 7, 16, 18, 19 | prdsplusgval 17374 | . . 3 ⊢ (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)))) |
| 21 | fvconst2g 7136 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
| 22 | 5, 21 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
| 23 | 22 | fveq2d 6826 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = (+g‘𝑅)) |
| 24 | pwsplusgval.a | . . . . . 6 ⊢ + = (+g‘𝑅) | |
| 25 | 23, 24 | eqtr4di 2784 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = + ) |
| 26 | 25 | oveqd 7363 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥) + (𝐺‘𝑥))) |
| 27 | 26 | mpteq2dva 5184 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
| 28 | 20, 27 | eqtrd 2766 | . 2 ⊢ (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
| 29 | pwsplusgval.p | . . . 4 ⊢ ✚ = (+g‘𝑌) | |
| 30 | 13 | fveq2d 6826 | . . . 4 ⊢ (𝜑 → (+g‘𝑌) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 31 | 29, 30 | eqtrid 2778 | . . 3 ⊢ (𝜑 → ✚ = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 32 | 31 | oveqd 7363 | . 2 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺)) |
| 33 | fvexd 6837 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
| 34 | fvexd 6837 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ V) | |
| 35 | eqid 2731 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 36 | 10, 35, 9, 5, 4, 8 | pwselbas 17390 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝑅)) |
| 37 | 36 | feqmptd 6890 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 38 | 10, 35, 9, 5, 4, 17 | pwselbas 17390 | . . . 4 ⊢ (𝜑 → 𝐺:𝐼⟶(Base‘𝑅)) |
| 39 | 38 | feqmptd 6890 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝐺‘𝑥))) |
| 40 | 4, 33, 34, 37, 39 | offval2 7630 | . 2 ⊢ (𝜑 → (𝐹 ∘f + 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) + (𝐺‘𝑥)))) |
| 41 | 28, 32, 40 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → (𝐹 ✚ 𝐺) = (𝐹 ∘f + 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {csn 4576 ↦ cmpt 5172 × cxp 5614 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 Basecbs 17117 +gcplusg 17158 Scalarcsca 17161 Xscprds 17346 ↑s cpws 17347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11059 ax-resscn 11060 ax-1cn 11061 ax-icn 11062 ax-addcl 11063 ax-addrcl 11064 ax-mulcl 11065 ax-mulrcl 11066 ax-mulcom 11067 ax-addass 11068 ax-mulass 11069 ax-distr 11070 ax-i2m1 11071 ax-1ne0 11072 ax-1rid 11073 ax-rnegex 11074 ax-rrecex 11075 ax-cnre 11076 ax-pre-lttri 11077 ax-pre-lttrn 11078 ax-pre-ltadd 11079 ax-pre-mulgt0 11080 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-tp 4581 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-pnf 11145 df-mnf 11146 df-xr 11147 df-ltxr 11148 df-le 11149 df-sub 11343 df-neg 11344 df-nn 12123 df-2 12185 df-3 12186 df-4 12187 df-5 12188 df-6 12189 df-7 12190 df-8 12191 df-9 12192 df-n0 12379 df-z 12466 df-dec 12586 df-uz 12730 df-fz 13405 df-struct 17055 df-slot 17090 df-ndx 17102 df-base 17118 df-plusg 17171 df-mulr 17172 df-sca 17174 df-vsca 17175 df-ip 17176 df-tset 17177 df-ple 17178 df-ds 17180 df-hom 17182 df-cco 17183 df-prds 17348 df-pws 17350 |
| This theorem is referenced by: pwsdiagmhm 18736 pwsco1mhm 18737 pwsco2mhm 18738 pwssub 18964 pwssplit2 20992 frlmplusgval 21699 psrgrp 21891 mpfaddcl 22038 mpfind 22040 evl1addd 22254 pf1addcl 22266 ply1rem 26096 psrmnd 42577 evlsaddval 42600 evladdval 42607 |
| Copyright terms: Public domain | W3C validator |