MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsplusgval Structured version   Visualization version   GIF version

Theorem pwsplusgval 17471
Description: Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsplusgval.y 𝑌 = (𝑅s 𝐼)
pwsplusgval.b 𝐵 = (Base‘𝑌)
pwsplusgval.r (𝜑𝑅𝑉)
pwsplusgval.i (𝜑𝐼𝑊)
pwsplusgval.f (𝜑𝐹𝐵)
pwsplusgval.g (𝜑𝐺𝐵)
pwsplusgval.a + = (+g𝑅)
pwsplusgval.p = (+g𝑌)
Assertion
Ref Expression
pwsplusgval (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))

Proof of Theorem pwsplusgval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2728 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2728 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 fvexd 6912 . . . 4 (𝜑 → (Scalar‘𝑅) ∈ V)
4 pwsplusgval.i . . . 4 (𝜑𝐼𝑊)
5 pwsplusgval.r . . . . 5 (𝜑𝑅𝑉)
6 fnconstg 6785 . . . . 5 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
75, 6syl 17 . . . 4 (𝜑 → (𝐼 × {𝑅}) Fn 𝐼)
8 pwsplusgval.f . . . . 5 (𝜑𝐹𝐵)
9 pwsplusgval.b . . . . . 6 𝐵 = (Base‘𝑌)
10 pwsplusgval.y . . . . . . . . 9 𝑌 = (𝑅s 𝐼)
11 eqid 2728 . . . . . . . . 9 (Scalar‘𝑅) = (Scalar‘𝑅)
1210, 11pwsval 17467 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
135, 4, 12syl2anc 583 . . . . . . 7 (𝜑𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6901 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
159, 14eqtrid 2780 . . . . 5 (𝜑𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
168, 15eleqtrd 2831 . . . 4 (𝜑𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
17 pwsplusgval.g . . . . 5 (𝜑𝐺𝐵)
1817, 15eleqtrd 2831 . . . 4 (𝜑𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
19 eqid 2728 . . . 4 (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
201, 2, 3, 4, 7, 16, 18, 19prdsplusgval 17454 . . 3 (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))))
21 fvconst2g 7214 . . . . . . . 8 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
225, 21sylan 579 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2322fveq2d 6901 . . . . . 6 ((𝜑𝑥𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = (+g𝑅))
24 pwsplusgval.a . . . . . 6 + = (+g𝑅)
2523, 24eqtr4di 2786 . . . . 5 ((𝜑𝑥𝐼) → (+g‘((𝐼 × {𝑅})‘𝑥)) = + )
2625oveqd 7437 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥)) = ((𝐹𝑥) + (𝐺𝑥)))
2726mpteq2dva 5248 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(+g‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))))
2820, 27eqtrd 2768 . 2 (𝜑 → (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))))
29 pwsplusgval.p . . . 4 = (+g𝑌)
3013fveq2d 6901 . . . 4 (𝜑 → (+g𝑌) = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3129, 30eqtrid 2780 . . 3 (𝜑 = (+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3231oveqd 7437 . 2 (𝜑 → (𝐹 𝐺) = (𝐹(+g‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺))
33 fvexd 6912 . . 3 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ V)
34 fvexd 6912 . . 3 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ V)
35 eqid 2728 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3610, 35, 9, 5, 4, 8pwselbas 17470 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝑅))
3736feqmptd 6967 . . 3 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
3810, 35, 9, 5, 4, 17pwselbas 17470 . . . 4 (𝜑𝐺:𝐼⟶(Base‘𝑅))
3938feqmptd 6967 . . 3 (𝜑𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
404, 33, 34, 37, 39offval2 7705 . 2 (𝜑 → (𝐹f + 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) + (𝐺𝑥))))
4128, 32, 403eqtr4d 2778 1 (𝜑 → (𝐹 𝐺) = (𝐹f + 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  Vcvv 3471  {csn 4629  cmpt 5231   × cxp 5676   Fn wfn 6543  cfv 6548  (class class class)co 7420  f cof 7683  Basecbs 17179  +gcplusg 17232  Scalarcsca 17235  Xscprds 17426  s cpws 17427
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-of 7685  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-1o 8486  df-er 8724  df-map 8846  df-ixp 8916  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9465  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-4 12307  df-5 12308  df-6 12309  df-7 12310  df-8 12311  df-9 12312  df-n0 12503  df-z 12589  df-dec 12708  df-uz 12853  df-fz 13517  df-struct 17115  df-slot 17150  df-ndx 17162  df-base 17180  df-plusg 17245  df-mulr 17246  df-sca 17248  df-vsca 17249  df-ip 17250  df-tset 17251  df-ple 17252  df-ds 17254  df-hom 17256  df-cco 17257  df-prds 17428  df-pws 17430
This theorem is referenced by:  pwsdiagmhm  18782  pwsco1mhm  18783  pwsco2mhm  18784  pwssub  19009  pwssplit2  20944  frlmplusgval  21697  psrgrp  21898  mpfaddcl  22050  mpfind  22052  evl1addd  22259  pf1addcl  22271  ply1rem  26099  psrmnd  41775  evlsaddval  41801  evladdval  41808
  Copyright terms: Public domain W3C validator