| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > resspwsds | Structured version Visualization version GIF version | ||
| Description: Restriction of a power metric. (Contributed by Mario Carneiro, 16-Sep-2015.) |
| Ref | Expression |
|---|---|
| resspwsds.y | ⊢ (𝜑 → 𝑌 = (𝑅 ↑s 𝐼)) |
| resspwsds.h | ⊢ (𝜑 → 𝐻 = ((𝑅 ↾s 𝐴) ↑s 𝐼)) |
| resspwsds.b | ⊢ 𝐵 = (Base‘𝐻) |
| resspwsds.d | ⊢ 𝐷 = (dist‘𝑌) |
| resspwsds.e | ⊢ 𝐸 = (dist‘𝐻) |
| resspwsds.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| resspwsds.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| resspwsds.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| resspwsds | ⊢ (𝜑 → 𝐸 = (𝐷 ↾ (𝐵 × 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resspwsds.y | . . 3 ⊢ (𝜑 → 𝑌 = (𝑅 ↑s 𝐼)) | |
| 2 | resspwsds.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
| 3 | resspwsds.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
| 4 | eqid 2729 | . . . . . 6 ⊢ (𝑅 ↑s 𝐼) = (𝑅 ↑s 𝐼) | |
| 5 | eqid 2729 | . . . . . 6 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 6 | 4, 5 | pwsval 17449 | . . . . 5 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑉) → (𝑅 ↑s 𝐼) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 7 | 2, 3, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 ↑s 𝐼) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 8 | fconstmpt 5700 | . . . . 5 ⊢ (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
| 9 | 8 | oveq2i 7398 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
| 10 | 7, 9 | eqtrdi 2780 | . . 3 ⊢ (𝜑 → (𝑅 ↑s 𝐼) = ((Scalar‘𝑅)Xs(𝑥 ∈ 𝐼 ↦ 𝑅))) |
| 11 | 1, 10 | eqtrd 2764 | . 2 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝑥 ∈ 𝐼 ↦ 𝑅))) |
| 12 | resspwsds.h | . . 3 ⊢ (𝜑 → 𝐻 = ((𝑅 ↾s 𝐴) ↑s 𝐼)) | |
| 13 | ovex 7420 | . . . . 5 ⊢ (𝑅 ↾s 𝐴) ∈ V | |
| 14 | eqid 2729 | . . . . . 6 ⊢ ((𝑅 ↾s 𝐴) ↑s 𝐼) = ((𝑅 ↾s 𝐴) ↑s 𝐼) | |
| 15 | eqid 2729 | . . . . . 6 ⊢ (Scalar‘(𝑅 ↾s 𝐴)) = (Scalar‘(𝑅 ↾s 𝐴)) | |
| 16 | 14, 15 | pwsval 17449 | . . . . 5 ⊢ (((𝑅 ↾s 𝐴) ∈ V ∧ 𝐼 ∈ 𝑉) → ((𝑅 ↾s 𝐴) ↑s 𝐼) = ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝐼 × {(𝑅 ↾s 𝐴)}))) |
| 17 | 13, 3, 16 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((𝑅 ↾s 𝐴) ↑s 𝐼) = ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝐼 × {(𝑅 ↾s 𝐴)}))) |
| 18 | fconstmpt 5700 | . . . . 5 ⊢ (𝐼 × {(𝑅 ↾s 𝐴)}) = (𝑥 ∈ 𝐼 ↦ (𝑅 ↾s 𝐴)) | |
| 19 | 18 | oveq2i 7398 | . . . 4 ⊢ ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝐼 × {(𝑅 ↾s 𝐴)})) = ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝑥 ∈ 𝐼 ↦ (𝑅 ↾s 𝐴))) |
| 20 | 17, 19 | eqtrdi 2780 | . . 3 ⊢ (𝜑 → ((𝑅 ↾s 𝐴) ↑s 𝐼) = ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝑥 ∈ 𝐼 ↦ (𝑅 ↾s 𝐴)))) |
| 21 | 12, 20 | eqtrd 2764 | . 2 ⊢ (𝜑 → 𝐻 = ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝑥 ∈ 𝐼 ↦ (𝑅 ↾s 𝐴)))) |
| 22 | resspwsds.b | . 2 ⊢ 𝐵 = (Base‘𝐻) | |
| 23 | resspwsds.d | . 2 ⊢ 𝐷 = (dist‘𝑌) | |
| 24 | resspwsds.e | . 2 ⊢ 𝐸 = (dist‘𝐻) | |
| 25 | fvexd 6873 | . 2 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | |
| 26 | fvexd 6873 | . 2 ⊢ (𝜑 → (Scalar‘(𝑅 ↾s 𝐴)) ∈ V) | |
| 27 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑊) |
| 28 | resspwsds.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
| 29 | 28 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ 𝑋) |
| 30 | 11, 21, 22, 23, 24, 25, 26, 3, 27, 29 | ressprdsds 24259 | 1 ⊢ (𝜑 → 𝐸 = (𝐷 ↾ (𝐵 × 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 {csn 4589 ↦ cmpt 5188 × cxp 5636 ↾ cres 5640 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 ↾s cress 17200 Scalarcsca 17223 distcds 17229 Xscprds 17408 ↑s cpws 17409 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-sup 9393 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-prds 17410 df-pws 17412 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |