![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resspwsds | Structured version Visualization version GIF version |
Description: Restriction of a power metric. (Contributed by Mario Carneiro, 16-Sep-2015.) |
Ref | Expression |
---|---|
resspwsds.y | ⊢ (𝜑 → 𝑌 = (𝑅 ↑s 𝐼)) |
resspwsds.h | ⊢ (𝜑 → 𝐻 = ((𝑅 ↾s 𝐴) ↑s 𝐼)) |
resspwsds.b | ⊢ 𝐵 = (Base‘𝐻) |
resspwsds.d | ⊢ 𝐷 = (dist‘𝑌) |
resspwsds.e | ⊢ 𝐸 = (dist‘𝐻) |
resspwsds.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
resspwsds.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
resspwsds.a | ⊢ (𝜑 → 𝐴 ∈ 𝑋) |
Ref | Expression |
---|---|
resspwsds | ⊢ (𝜑 → 𝐸 = (𝐷 ↾ (𝐵 × 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resspwsds.y | . . 3 ⊢ (𝜑 → 𝑌 = (𝑅 ↑s 𝐼)) | |
2 | resspwsds.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
3 | resspwsds.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
4 | eqid 2737 | . . . . . 6 ⊢ (𝑅 ↑s 𝐼) = (𝑅 ↑s 𝐼) | |
5 | eqid 2737 | . . . . . 6 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
6 | 4, 5 | pwsval 17542 | . . . . 5 ⊢ ((𝑅 ∈ 𝑊 ∧ 𝐼 ∈ 𝑉) → (𝑅 ↑s 𝐼) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
7 | 2, 3, 6 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑅 ↑s 𝐼) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
8 | fconstmpt 5755 | . . . . 5 ⊢ (𝐼 × {𝑅}) = (𝑥 ∈ 𝐼 ↦ 𝑅) | |
9 | 8 | oveq2i 7449 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝑥 ∈ 𝐼 ↦ 𝑅)) |
10 | 7, 9 | eqtrdi 2793 | . . 3 ⊢ (𝜑 → (𝑅 ↑s 𝐼) = ((Scalar‘𝑅)Xs(𝑥 ∈ 𝐼 ↦ 𝑅))) |
11 | 1, 10 | eqtrd 2777 | . 2 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝑥 ∈ 𝐼 ↦ 𝑅))) |
12 | resspwsds.h | . . 3 ⊢ (𝜑 → 𝐻 = ((𝑅 ↾s 𝐴) ↑s 𝐼)) | |
13 | ovex 7471 | . . . . 5 ⊢ (𝑅 ↾s 𝐴) ∈ V | |
14 | eqid 2737 | . . . . . 6 ⊢ ((𝑅 ↾s 𝐴) ↑s 𝐼) = ((𝑅 ↾s 𝐴) ↑s 𝐼) | |
15 | eqid 2737 | . . . . . 6 ⊢ (Scalar‘(𝑅 ↾s 𝐴)) = (Scalar‘(𝑅 ↾s 𝐴)) | |
16 | 14, 15 | pwsval 17542 | . . . . 5 ⊢ (((𝑅 ↾s 𝐴) ∈ V ∧ 𝐼 ∈ 𝑉) → ((𝑅 ↾s 𝐴) ↑s 𝐼) = ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝐼 × {(𝑅 ↾s 𝐴)}))) |
17 | 13, 3, 16 | sylancr 587 | . . . 4 ⊢ (𝜑 → ((𝑅 ↾s 𝐴) ↑s 𝐼) = ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝐼 × {(𝑅 ↾s 𝐴)}))) |
18 | fconstmpt 5755 | . . . . 5 ⊢ (𝐼 × {(𝑅 ↾s 𝐴)}) = (𝑥 ∈ 𝐼 ↦ (𝑅 ↾s 𝐴)) | |
19 | 18 | oveq2i 7449 | . . . 4 ⊢ ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝐼 × {(𝑅 ↾s 𝐴)})) = ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝑥 ∈ 𝐼 ↦ (𝑅 ↾s 𝐴))) |
20 | 17, 19 | eqtrdi 2793 | . . 3 ⊢ (𝜑 → ((𝑅 ↾s 𝐴) ↑s 𝐼) = ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝑥 ∈ 𝐼 ↦ (𝑅 ↾s 𝐴)))) |
21 | 12, 20 | eqtrd 2777 | . 2 ⊢ (𝜑 → 𝐻 = ((Scalar‘(𝑅 ↾s 𝐴))Xs(𝑥 ∈ 𝐼 ↦ (𝑅 ↾s 𝐴)))) |
22 | resspwsds.b | . 2 ⊢ 𝐵 = (Base‘𝐻) | |
23 | resspwsds.d | . 2 ⊢ 𝐷 = (dist‘𝑌) | |
24 | resspwsds.e | . 2 ⊢ 𝐸 = (dist‘𝐻) | |
25 | fvexd 6929 | . 2 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | |
26 | fvexd 6929 | . 2 ⊢ (𝜑 → (Scalar‘(𝑅 ↾s 𝐴)) ∈ V) | |
27 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝑅 ∈ 𝑊) |
28 | resspwsds.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑋) | |
29 | 28 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → 𝐴 ∈ 𝑋) |
30 | 11, 21, 22, 23, 24, 25, 26, 3, 27, 29 | ressprdsds 24406 | 1 ⊢ (𝜑 → 𝐸 = (𝐷 ↾ (𝐵 × 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3481 {csn 4634 ↦ cmpt 5234 × cxp 5691 ↾ cres 5695 ‘cfv 6569 (class class class)co 7438 Basecbs 17254 ↾s cress 17283 Scalarcsca 17310 distcds 17316 Xscprds 17501 ↑s cpws 17502 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pow 5374 ax-pr 5441 ax-un 7761 ax-cnex 11218 ax-resscn 11219 ax-1cn 11220 ax-icn 11221 ax-addcl 11222 ax-addrcl 11223 ax-mulcl 11224 ax-mulrcl 11225 ax-mulcom 11226 ax-addass 11227 ax-mulass 11228 ax-distr 11229 ax-i2m1 11230 ax-1ne0 11231 ax-1rid 11232 ax-rnegex 11233 ax-rrecex 11234 ax-cnre 11235 ax-pre-lttri 11236 ax-pre-lttrn 11237 ax-pre-ltadd 11238 ax-pre-mulgt0 11239 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-tp 4639 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-pred 6329 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-riota 7395 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-1st 8022 df-2nd 8023 df-frecs 8314 df-wrecs 8345 df-recs 8419 df-rdg 8458 df-1o 8514 df-er 8753 df-map 8876 df-ixp 8946 df-en 8994 df-dom 8995 df-sdom 8996 df-fin 8997 df-sup 9489 df-pnf 11304 df-mnf 11305 df-xr 11306 df-ltxr 11307 df-le 11308 df-sub 11501 df-neg 11502 df-nn 12274 df-2 12336 df-3 12337 df-4 12338 df-5 12339 df-6 12340 df-7 12341 df-8 12342 df-9 12343 df-n0 12534 df-z 12621 df-dec 12741 df-uz 12886 df-fz 13554 df-struct 17190 df-sets 17207 df-slot 17225 df-ndx 17237 df-base 17255 df-ress 17284 df-plusg 17320 df-mulr 17321 df-sca 17323 df-vsca 17324 df-ip 17325 df-tset 17326 df-ple 17327 df-ds 17329 df-hom 17331 df-cco 17332 df-prds 17503 df-pws 17505 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |