MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsmulrval Structured version   Visualization version   GIF version

Theorem pwsmulrval 16756
Description: Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsplusgval.y 𝑌 = (𝑅s 𝐼)
pwsplusgval.b 𝐵 = (Base‘𝑌)
pwsplusgval.r (𝜑𝑅𝑉)
pwsplusgval.i (𝜑𝐼𝑊)
pwsplusgval.f (𝜑𝐹𝐵)
pwsplusgval.g (𝜑𝐺𝐵)
pwsmulrval.a · = (.r𝑅)
pwsmulrval.p = (.r𝑌)
Assertion
Ref Expression
pwsmulrval (𝜑 → (𝐹 𝐺) = (𝐹f · 𝐺))

Proof of Theorem pwsmulrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2798 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2798 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 fvexd 6660 . . . 4 (𝜑 → (Scalar‘𝑅) ∈ V)
4 pwsplusgval.i . . . 4 (𝜑𝐼𝑊)
5 pwsplusgval.r . . . . 5 (𝜑𝑅𝑉)
6 fnconstg 6541 . . . . 5 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
75, 6syl 17 . . . 4 (𝜑 → (𝐼 × {𝑅}) Fn 𝐼)
8 pwsplusgval.f . . . . 5 (𝜑𝐹𝐵)
9 pwsplusgval.b . . . . . 6 𝐵 = (Base‘𝑌)
10 pwsplusgval.y . . . . . . . . 9 𝑌 = (𝑅s 𝐼)
11 eqid 2798 . . . . . . . . 9 (Scalar‘𝑅) = (Scalar‘𝑅)
1210, 11pwsval 16751 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
135, 4, 12syl2anc 587 . . . . . . 7 (𝜑𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6649 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
159, 14syl5eq 2845 . . . . 5 (𝜑𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
168, 15eleqtrd 2892 . . . 4 (𝜑𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
17 pwsplusgval.g . . . . 5 (𝜑𝐺𝐵)
1817, 15eleqtrd 2892 . . . 4 (𝜑𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
19 eqid 2798 . . . 4 (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
201, 2, 3, 4, 7, 16, 18, 19prdsmulrval 16740 . . 3 (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))))
21 fvconst2g 6941 . . . . . . . 8 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
225, 21sylan 583 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2322fveq2d 6649 . . . . . 6 ((𝜑𝑥𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = (.r𝑅))
24 pwsmulrval.a . . . . . 6 · = (.r𝑅)
2523, 24eqtr4di 2851 . . . . 5 ((𝜑𝑥𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = · )
2625oveqd 7152 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥)) = ((𝐹𝑥) · (𝐺𝑥)))
2726mpteq2dva 5125 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
2820, 27eqtrd 2833 . 2 (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
29 pwsmulrval.p . . . 4 = (.r𝑌)
3013fveq2d 6649 . . . 4 (𝜑 → (.r𝑌) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3129, 30syl5eq 2845 . . 3 (𝜑 = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3231oveqd 7152 . 2 (𝜑 → (𝐹 𝐺) = (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺))
33 fvexd 6660 . . 3 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ V)
34 fvexd 6660 . . 3 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ V)
35 eqid 2798 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3610, 35, 9, 5, 4, 8pwselbas 16754 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝑅))
3736feqmptd 6708 . . 3 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
3810, 35, 9, 5, 4, 17pwselbas 16754 . . . 4 (𝜑𝐺:𝐼⟶(Base‘𝑅))
3938feqmptd 6708 . . 3 (𝜑𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
404, 33, 34, 37, 39offval2 7406 . 2 (𝜑 → (𝐹f · 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
4128, 32, 403eqtr4d 2843 1 (𝜑 → (𝐹 𝐺) = (𝐹f · 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  Vcvv 3441  {csn 4525  cmpt 5110   × cxp 5517   Fn wfn 6319  cfv 6324  (class class class)co 7135  f cof 7387  Basecbs 16475  .rcmulr 16558  Scalarcsca 16560  Xscprds 16711  s cpws 16712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-prds 16713  df-pws 16715
This theorem is referenced by:  mpfmulcl  20778  mpfind  20779  evl1muld  20967  pf1mulcl  20978  ply1rem  24764  fta1glem2  24767  fta1blem  24769  plypf1  24809
  Copyright terms: Public domain W3C validator