| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pwsmulrval | Structured version Visualization version GIF version | ||
| Description: Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
| Ref | Expression |
|---|---|
| pwsplusgval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
| pwsplusgval.b | ⊢ 𝐵 = (Base‘𝑌) |
| pwsplusgval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
| pwsplusgval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| pwsplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
| pwsplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
| pwsmulrval.a | ⊢ · = (.r‘𝑅) |
| pwsmulrval.p | ⊢ ∙ = (.r‘𝑌) |
| Ref | Expression |
|---|---|
| pwsmulrval | ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝐹 ∘f · 𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
| 2 | eqid 2730 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 3 | fvexd 6876 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | |
| 4 | pwsplusgval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
| 5 | pwsplusgval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
| 6 | fnconstg 6751 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
| 7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
| 8 | pwsplusgval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
| 9 | pwsplusgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
| 10 | pwsplusgval.y | . . . . . . . . 9 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
| 11 | eqid 2730 | . . . . . . . . 9 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
| 12 | 10, 11 | pwsval 17456 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 13 | 5, 4, 12 | syl2anc 584 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
| 14 | 13 | fveq2d 6865 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 15 | 9, 14 | eqtrid 2777 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 16 | 8, 15 | eleqtrd 2831 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 17 | pwsplusgval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
| 18 | 17, 15 | eleqtrd 2831 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 19 | eqid 2730 | . . . 4 ⊢ (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
| 20 | 1, 2, 3, 4, 7, 16, 18, 19 | prdsmulrval 17445 | . . 3 ⊢ (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)))) |
| 21 | fvconst2g 7179 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
| 22 | 5, 21 | sylan 580 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
| 23 | 22 | fveq2d 6865 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = (.r‘𝑅)) |
| 24 | pwsmulrval.a | . . . . . 6 ⊢ · = (.r‘𝑅) | |
| 25 | 23, 24 | eqtr4di 2783 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = · ) |
| 26 | 25 | oveqd 7407 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥) · (𝐺‘𝑥))) |
| 27 | 26 | mpteq2dva 5203 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
| 28 | 20, 27 | eqtrd 2765 | . 2 ⊢ (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
| 29 | pwsmulrval.p | . . . 4 ⊢ ∙ = (.r‘𝑌) | |
| 30 | 13 | fveq2d 6865 | . . . 4 ⊢ (𝜑 → (.r‘𝑌) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 31 | 29, 30 | eqtrid 2777 | . . 3 ⊢ (𝜑 → ∙ = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
| 32 | 31 | oveqd 7407 | . 2 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺)) |
| 33 | fvexd 6876 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
| 34 | fvexd 6876 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ V) | |
| 35 | eqid 2730 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 36 | 10, 35, 9, 5, 4, 8 | pwselbas 17459 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝑅)) |
| 37 | 36 | feqmptd 6932 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
| 38 | 10, 35, 9, 5, 4, 17 | pwselbas 17459 | . . . 4 ⊢ (𝜑 → 𝐺:𝐼⟶(Base‘𝑅)) |
| 39 | 38 | feqmptd 6932 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝐺‘𝑥))) |
| 40 | 4, 33, 34, 37, 39 | offval2 7676 | . 2 ⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
| 41 | 28, 32, 40 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝐹 ∘f · 𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {csn 4592 ↦ cmpt 5191 × cxp 5639 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 Basecbs 17186 .rcmulr 17228 Scalarcsca 17230 Xscprds 17415 ↑s cpws 17416 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-slot 17159 df-ndx 17171 df-base 17187 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-hom 17251 df-cco 17252 df-prds 17417 df-pws 17419 |
| This theorem is referenced by: pwspjmhmmgpd 20244 mpfmulcl 22020 mpfind 22021 evl1muld 22237 pf1mulcl 22248 evls1fpws 22263 ply1rem 26078 fta1glem2 26081 fta1blem 26083 plypf1 26124 evlsvvval 42558 evlsmulval 42564 evlmulval 42571 |
| Copyright terms: Public domain | W3C validator |