![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pwsmulrval | Structured version Visualization version GIF version |
Description: Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.) |
Ref | Expression |
---|---|
pwsplusgval.y | ⊢ 𝑌 = (𝑅 ↑s 𝐼) |
pwsplusgval.b | ⊢ 𝐵 = (Base‘𝑌) |
pwsplusgval.r | ⊢ (𝜑 → 𝑅 ∈ 𝑉) |
pwsplusgval.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
pwsplusgval.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
pwsplusgval.g | ⊢ (𝜑 → 𝐺 ∈ 𝐵) |
pwsmulrval.a | ⊢ · = (.r‘𝑅) |
pwsmulrval.p | ⊢ ∙ = (.r‘𝑌) |
Ref | Expression |
---|---|
pwsmulrval | ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝐹 ∘f · 𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2724 | . . . 4 ⊢ ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) | |
2 | eqid 2724 | . . . 4 ⊢ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
3 | fvexd 6896 | . . . 4 ⊢ (𝜑 → (Scalar‘𝑅) ∈ V) | |
4 | pwsplusgval.i | . . . 4 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
5 | pwsplusgval.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ 𝑉) | |
6 | fnconstg 6769 | . . . . 5 ⊢ (𝑅 ∈ 𝑉 → (𝐼 × {𝑅}) Fn 𝐼) | |
7 | 5, 6 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼 × {𝑅}) Fn 𝐼) |
8 | pwsplusgval.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
9 | pwsplusgval.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑌) | |
10 | pwsplusgval.y | . . . . . . . . 9 ⊢ 𝑌 = (𝑅 ↑s 𝐼) | |
11 | eqid 2724 | . . . . . . . . 9 ⊢ (Scalar‘𝑅) = (Scalar‘𝑅) | |
12 | 10, 11 | pwsval 17431 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
13 | 5, 4, 12 | syl2anc 583 | . . . . . . 7 ⊢ (𝜑 → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) |
14 | 13 | fveq2d 6885 | . . . . . 6 ⊢ (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
15 | 9, 14 | eqtrid 2776 | . . . . 5 ⊢ (𝜑 → 𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
16 | 8, 15 | eleqtrd 2827 | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
17 | pwsplusgval.g | . . . . 5 ⊢ (𝜑 → 𝐺 ∈ 𝐵) | |
18 | 17, 15 | eleqtrd 2827 | . . . 4 ⊢ (𝜑 → 𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
19 | eqid 2724 | . . . 4 ⊢ (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) | |
20 | 1, 2, 3, 4, 7, 16, 18, 19 | prdsmulrval 17420 | . . 3 ⊢ (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)))) |
21 | fvconst2g 7195 | . . . . . . . 8 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) | |
22 | 5, 21 | sylan 579 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅) |
23 | 22 | fveq2d 6885 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = (.r‘𝑅)) |
24 | pwsmulrval.a | . . . . . 6 ⊢ · = (.r‘𝑅) | |
25 | 23, 24 | eqtr4di 2782 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = · ) |
26 | 25 | oveqd 7418 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → ((𝐹‘𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥)) = ((𝐹‘𝑥) · (𝐺‘𝑥))) |
27 | 26 | mpteq2dva 5238 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺‘𝑥))) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
28 | 20, 27 | eqtrd 2764 | . 2 ⊢ (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
29 | pwsmulrval.p | . . . 4 ⊢ ∙ = (.r‘𝑌) | |
30 | 13 | fveq2d 6885 | . . . 4 ⊢ (𝜑 → (.r‘𝑌) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
31 | 29, 30 | eqtrid 2776 | . . 3 ⊢ (𝜑 → ∙ = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))) |
32 | 31 | oveqd 7418 | . 2 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺)) |
33 | fvexd 6896 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐹‘𝑥) ∈ V) | |
34 | fvexd 6896 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐼) → (𝐺‘𝑥) ∈ V) | |
35 | eqid 2724 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
36 | 10, 35, 9, 5, 4, 8 | pwselbas 17434 | . . . 4 ⊢ (𝜑 → 𝐹:𝐼⟶(Base‘𝑅)) |
37 | 36 | feqmptd 6950 | . . 3 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐼 ↦ (𝐹‘𝑥))) |
38 | 10, 35, 9, 5, 4, 17 | pwselbas 17434 | . . . 4 ⊢ (𝜑 → 𝐺:𝐼⟶(Base‘𝑅)) |
39 | 38 | feqmptd 6950 | . . 3 ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐼 ↦ (𝐺‘𝑥))) |
40 | 4, 33, 34, 37, 39 | offval2 7683 | . 2 ⊢ (𝜑 → (𝐹 ∘f · 𝐺) = (𝑥 ∈ 𝐼 ↦ ((𝐹‘𝑥) · (𝐺‘𝑥)))) |
41 | 28, 32, 40 | 3eqtr4d 2774 | 1 ⊢ (𝜑 → (𝐹 ∙ 𝐺) = (𝐹 ∘f · 𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1533 ∈ wcel 2098 Vcvv 3466 {csn 4620 ↦ cmpt 5221 × cxp 5664 Fn wfn 6528 ‘cfv 6533 (class class class)co 7401 ∘f cof 7661 Basecbs 17143 .rcmulr 17197 Scalarcsca 17199 Xscprds 17390 ↑s cpws 17391 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3959 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-tp 4625 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-tr 5256 df-id 5564 df-eprel 5570 df-po 5578 df-so 5579 df-fr 5621 df-we 5623 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-pred 6290 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-mpo 7406 df-of 7663 df-om 7849 df-1st 7968 df-2nd 7969 df-frecs 8261 df-wrecs 8292 df-recs 8366 df-rdg 8405 df-1o 8461 df-er 8699 df-map 8818 df-ixp 8888 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-pnf 11247 df-mnf 11248 df-xr 11249 df-ltxr 11250 df-le 11251 df-sub 11443 df-neg 11444 df-nn 12210 df-2 12272 df-3 12273 df-4 12274 df-5 12275 df-6 12276 df-7 12277 df-8 12278 df-9 12279 df-n0 12470 df-z 12556 df-dec 12675 df-uz 12820 df-fz 13482 df-struct 17079 df-slot 17114 df-ndx 17126 df-base 17144 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-prds 17392 df-pws 17394 |
This theorem is referenced by: pwspjmhmmgpd 20217 mpfmulcl 21979 mpfind 21980 evl1muld 22184 pf1mulcl 22195 ply1rem 26021 fta1glem2 26024 fta1blem 26026 plypf1 26066 evls1fpws 33113 evlsvvval 41624 evlsmulval 41630 evlmulval 41637 |
Copyright terms: Public domain | W3C validator |