MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsmulrval Structured version   Visualization version   GIF version

Theorem pwsmulrval 17551
Description: Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsplusgval.y 𝑌 = (𝑅s 𝐼)
pwsplusgval.b 𝐵 = (Base‘𝑌)
pwsplusgval.r (𝜑𝑅𝑉)
pwsplusgval.i (𝜑𝐼𝑊)
pwsplusgval.f (𝜑𝐹𝐵)
pwsplusgval.g (𝜑𝐺𝐵)
pwsmulrval.a · = (.r𝑅)
pwsmulrval.p = (.r𝑌)
Assertion
Ref Expression
pwsmulrval (𝜑 → (𝐹 𝐺) = (𝐹f · 𝐺))

Proof of Theorem pwsmulrval
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 ((Scalar‘𝑅)Xs(𝐼 × {𝑅})) = ((Scalar‘𝑅)Xs(𝐼 × {𝑅}))
2 eqid 2740 . . . 4 (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
3 fvexd 6935 . . . 4 (𝜑 → (Scalar‘𝑅) ∈ V)
4 pwsplusgval.i . . . 4 (𝜑𝐼𝑊)
5 pwsplusgval.r . . . . 5 (𝜑𝑅𝑉)
6 fnconstg 6809 . . . . 5 (𝑅𝑉 → (𝐼 × {𝑅}) Fn 𝐼)
75, 6syl 17 . . . 4 (𝜑 → (𝐼 × {𝑅}) Fn 𝐼)
8 pwsplusgval.f . . . . 5 (𝜑𝐹𝐵)
9 pwsplusgval.b . . . . . 6 𝐵 = (Base‘𝑌)
10 pwsplusgval.y . . . . . . . . 9 𝑌 = (𝑅s 𝐼)
11 eqid 2740 . . . . . . . . 9 (Scalar‘𝑅) = (Scalar‘𝑅)
1210, 11pwsval 17546 . . . . . . . 8 ((𝑅𝑉𝐼𝑊) → 𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
135, 4, 12syl2anc 583 . . . . . . 7 (𝜑𝑌 = ((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
1413fveq2d 6924 . . . . . 6 (𝜑 → (Base‘𝑌) = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
159, 14eqtrid 2792 . . . . 5 (𝜑𝐵 = (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
168, 15eleqtrd 2846 . . . 4 (𝜑𝐹 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
17 pwsplusgval.g . . . . 5 (𝜑𝐺𝐵)
1817, 15eleqtrd 2846 . . . 4 (𝜑𝐺 ∈ (Base‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
19 eqid 2740 . . . 4 (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))
201, 2, 3, 4, 7, 16, 18, 19prdsmulrval 17535 . . 3 (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))))
21 fvconst2g 7239 . . . . . . . 8 ((𝑅𝑉𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
225, 21sylan 579 . . . . . . 7 ((𝜑𝑥𝐼) → ((𝐼 × {𝑅})‘𝑥) = 𝑅)
2322fveq2d 6924 . . . . . 6 ((𝜑𝑥𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = (.r𝑅))
24 pwsmulrval.a . . . . . 6 · = (.r𝑅)
2523, 24eqtr4di 2798 . . . . 5 ((𝜑𝑥𝐼) → (.r‘((𝐼 × {𝑅})‘𝑥)) = · )
2625oveqd 7465 . . . 4 ((𝜑𝑥𝐼) → ((𝐹𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥)) = ((𝐹𝑥) · (𝐺𝑥)))
2726mpteq2dva 5266 . . 3 (𝜑 → (𝑥𝐼 ↦ ((𝐹𝑥)(.r‘((𝐼 × {𝑅})‘𝑥))(𝐺𝑥))) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
2820, 27eqtrd 2780 . 2 (𝜑 → (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
29 pwsmulrval.p . . . 4 = (.r𝑌)
3013fveq2d 6924 . . . 4 (𝜑 → (.r𝑌) = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3129, 30eqtrid 2792 . . 3 (𝜑 = (.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅}))))
3231oveqd 7465 . 2 (𝜑 → (𝐹 𝐺) = (𝐹(.r‘((Scalar‘𝑅)Xs(𝐼 × {𝑅})))𝐺))
33 fvexd 6935 . . 3 ((𝜑𝑥𝐼) → (𝐹𝑥) ∈ V)
34 fvexd 6935 . . 3 ((𝜑𝑥𝐼) → (𝐺𝑥) ∈ V)
35 eqid 2740 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3610, 35, 9, 5, 4, 8pwselbas 17549 . . . 4 (𝜑𝐹:𝐼⟶(Base‘𝑅))
3736feqmptd 6990 . . 3 (𝜑𝐹 = (𝑥𝐼 ↦ (𝐹𝑥)))
3810, 35, 9, 5, 4, 17pwselbas 17549 . . . 4 (𝜑𝐺:𝐼⟶(Base‘𝑅))
3938feqmptd 6990 . . 3 (𝜑𝐺 = (𝑥𝐼 ↦ (𝐺𝑥)))
404, 33, 34, 37, 39offval2 7734 . 2 (𝜑 → (𝐹f · 𝐺) = (𝑥𝐼 ↦ ((𝐹𝑥) · (𝐺𝑥))))
4128, 32, 403eqtr4d 2790 1 (𝜑 → (𝐹 𝐺) = (𝐹f · 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  {csn 4648  cmpt 5249   × cxp 5698   Fn wfn 6568  cfv 6573  (class class class)co 7448  f cof 7712  Basecbs 17258  .rcmulr 17312  Scalarcsca 17314  Xscprds 17505  s cpws 17506
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-prds 17507  df-pws 17509
This theorem is referenced by:  pwspjmhmmgpd  20351  mpfmulcl  22153  mpfind  22154  evl1muld  22368  pf1mulcl  22379  evls1fpws  22394  ply1rem  26225  fta1glem2  26228  fta1blem  26230  plypf1  26271  evlsvvval  42518  evlsmulval  42524  evlmulval  42531
  Copyright terms: Public domain W3C validator