MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reschom Structured version   Visualization version   GIF version

Theorem reschom 17460
Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rescbas.d 𝐷 = (𝐶cat 𝐻)
rescbas.b 𝐵 = (Base‘𝐶)
rescbas.c (𝜑𝐶𝑉)
rescbas.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescbas.s (𝜑𝑆𝐵)
Assertion
Ref Expression
reschom (𝜑𝐻 = (Hom ‘𝐷))

Proof of Theorem reschom
StepHypRef Expression
1 ovex 7288 . . 3 (𝐶s 𝑆) ∈ V
2 rescbas.h . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 rescbas.s . . . . . 6 (𝜑𝑆𝐵)
4 rescbas.b . . . . . . . 8 𝐵 = (Base‘𝐶)
54fvexi 6770 . . . . . . 7 𝐵 ∈ V
65ssex 5240 . . . . . 6 (𝑆𝐵𝑆 ∈ V)
73, 6syl 17 . . . . 5 (𝜑𝑆 ∈ V)
87, 7xpexd 7579 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ V)
9 fnex 7075 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
102, 8, 9syl2anc 583 . . 3 (𝜑𝐻 ∈ V)
11 homid 17041 . . . 4 Hom = Slot (Hom ‘ndx)
1211setsid 16837 . . 3 (((𝐶s 𝑆) ∈ V ∧ 𝐻 ∈ V) → 𝐻 = (Hom ‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)))
131, 10, 12sylancr 586 . 2 (𝜑𝐻 = (Hom ‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)))
14 rescbas.d . . . 4 𝐷 = (𝐶cat 𝐻)
15 rescbas.c . . . 4 (𝜑𝐶𝑉)
1614, 15, 7, 2rescval2 17457 . . 3 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
1716fveq2d 6760 . 2 (𝜑 → (Hom ‘𝐷) = (Hom ‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)))
1813, 17eqtr4d 2781 1 (𝜑𝐻 = (Hom ‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  cop 4564   × cxp 5578   Fn wfn 6413  cfv 6418  (class class class)co 7255   sSet csts 16792  ndxcnx 16822  Basecbs 16840  s cress 16867  Hom chom 16899  cat cresc 17437
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-ltxr 10945  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-dec 12367  df-sets 16793  df-slot 16811  df-ndx 16823  df-hom 16912  df-resc 17440
This theorem is referenced by:  reschomf  17461  subccatid  17477  issubc3  17480  fullresc  17482  funcres  17527  funcres2b  17528  funcres2  17529  idfusubc  45312  rngchomfval  45412  ringchomfval  45458  subthinc  46209
  Copyright terms: Public domain W3C validator