Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reschom | Structured version Visualization version GIF version |
Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Ref | Expression |
---|---|
reschom | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7317 | . . 3 ⊢ (𝐶 ↾s 𝑆) ∈ V | |
2 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
3 | rescbas.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
4 | rescbas.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 4 | fvexi 6797 | . . . . . . 7 ⊢ 𝐵 ∈ V |
6 | 5 | ssex 5246 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
7 | 3, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ V) |
8 | 7, 7 | xpexd 7610 | . . . 4 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ V) |
9 | fnex 7102 | . . . 4 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V) | |
10 | 2, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
11 | homid 17131 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
12 | 11 | setsid 16918 | . . 3 ⊢ (((𝐶 ↾s 𝑆) ∈ V ∧ 𝐻 ∈ V) → 𝐻 = (Hom ‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
13 | 1, 10, 12 | sylancr 587 | . 2 ⊢ (𝜑 → 𝐻 = (Hom ‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
14 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
15 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
16 | 14, 15, 7, 2 | rescval2 17549 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
17 | 16 | fveq2d 6787 | . 2 ⊢ (𝜑 → (Hom ‘𝐷) = (Hom ‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
18 | 13, 17 | eqtr4d 2782 | 1 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3433 ⊆ wss 3888 〈cop 4568 × cxp 5588 Fn wfn 6432 ‘cfv 6437 (class class class)co 7284 sSet csts 16873 ndxcnx 16903 Basecbs 16921 ↾s cress 16950 Hom chom 16982 ↾cat cresc 17529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2710 ax-rep 5210 ax-sep 5224 ax-nul 5231 ax-pow 5289 ax-pr 5353 ax-un 7597 ax-cnex 10936 ax-resscn 10937 ax-1cn 10938 ax-icn 10939 ax-addcl 10940 ax-addrcl 10941 ax-mulcl 10942 ax-mulrcl 10943 ax-mulcom 10944 ax-addass 10945 ax-mulass 10946 ax-distr 10947 ax-i2m1 10948 ax-1ne0 10949 ax-1rid 10950 ax-rnegex 10951 ax-rrecex 10952 ax-cnre 10953 ax-pre-lttri 10954 ax-pre-lttrn 10955 ax-pre-ltadd 10956 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3073 df-rab 3074 df-v 3435 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5076 df-opab 5138 df-mpt 5159 df-tr 5193 df-id 5490 df-eprel 5496 df-po 5504 df-so 5505 df-fr 5545 df-we 5547 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-pred 6206 df-ord 6273 df-on 6274 df-lim 6275 df-suc 6276 df-iota 6395 df-fun 6439 df-fn 6440 df-f 6441 df-f1 6442 df-fo 6443 df-f1o 6444 df-fv 6445 df-ov 7287 df-oprab 7288 df-mpo 7289 df-om 7722 df-2nd 7841 df-frecs 8106 df-wrecs 8137 df-recs 8211 df-rdg 8250 df-er 8507 df-en 8743 df-dom 8744 df-sdom 8745 df-pnf 11020 df-mnf 11021 df-ltxr 11023 df-nn 11983 df-2 12045 df-3 12046 df-4 12047 df-5 12048 df-6 12049 df-7 12050 df-8 12051 df-9 12052 df-n0 12243 df-dec 12447 df-sets 16874 df-slot 16892 df-ndx 16904 df-hom 16995 df-resc 17532 |
This theorem is referenced by: reschomf 17553 subccatid 17570 issubc3 17573 fullresc 17575 funcres 17620 funcres2b 17621 funcres2 17622 idfusubc 45435 rngchomfval 45535 ringchomfval 45581 subthinc 46332 |
Copyright terms: Public domain | W3C validator |