![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reschom | Structured version Visualization version GIF version |
Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescbas.d | β’ π· = (πΆ βΎcat π») |
rescbas.b | β’ π΅ = (BaseβπΆ) |
rescbas.c | β’ (π β πΆ β π) |
rescbas.h | β’ (π β π» Fn (π Γ π)) |
rescbas.s | β’ (π β π β π΅) |
Ref | Expression |
---|---|
reschom | β’ (π β π» = (Hom βπ·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7435 | . . 3 β’ (πΆ βΎs π) β V | |
2 | rescbas.h | . . . 4 β’ (π β π» Fn (π Γ π)) | |
3 | rescbas.s | . . . . . 6 β’ (π β π β π΅) | |
4 | rescbas.b | . . . . . . . 8 β’ π΅ = (BaseβπΆ) | |
5 | 4 | fvexi 6896 | . . . . . . 7 β’ π΅ β V |
6 | 5 | ssex 5312 | . . . . . 6 β’ (π β π΅ β π β V) |
7 | 3, 6 | syl 17 | . . . . 5 β’ (π β π β V) |
8 | 7, 7 | xpexd 7732 | . . . 4 β’ (π β (π Γ π) β V) |
9 | fnex 7211 | . . . 4 β’ ((π» Fn (π Γ π) β§ (π Γ π) β V) β π» β V) | |
10 | 2, 8, 9 | syl2anc 583 | . . 3 β’ (π β π» β V) |
11 | homid 17358 | . . . 4 β’ Hom = Slot (Hom βndx) | |
12 | 11 | setsid 17142 | . . 3 β’ (((πΆ βΎs π) β V β§ π» β V) β π» = (Hom β((πΆ βΎs π) sSet β¨(Hom βndx), π»β©))) |
13 | 1, 10, 12 | sylancr 586 | . 2 β’ (π β π» = (Hom β((πΆ βΎs π) sSet β¨(Hom βndx), π»β©))) |
14 | rescbas.d | . . . 4 β’ π· = (πΆ βΎcat π») | |
15 | rescbas.c | . . . 4 β’ (π β πΆ β π) | |
16 | 14, 15, 7, 2 | rescval2 17776 | . . 3 β’ (π β π· = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
17 | 16 | fveq2d 6886 | . 2 β’ (π β (Hom βπ·) = (Hom β((πΆ βΎs π) sSet β¨(Hom βndx), π»β©))) |
18 | 13, 17 | eqtr4d 2767 | 1 β’ (π β π» = (Hom βπ·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3466 β wss 3941 β¨cop 4627 Γ cxp 5665 Fn wfn 6529 βcfv 6534 (class class class)co 7402 sSet csts 17097 ndxcnx 17127 Basecbs 17145 βΎs cress 17174 Hom chom 17209 βΎcat cresc 17756 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pow 5354 ax-pr 5418 ax-un 7719 ax-cnex 11163 ax-resscn 11164 ax-1cn 11165 ax-icn 11166 ax-addcl 11167 ax-addrcl 11168 ax-mulcl 11169 ax-mulrcl 11170 ax-mulcom 11171 ax-addass 11172 ax-mulass 11173 ax-distr 11174 ax-i2m1 11175 ax-1ne0 11176 ax-1rid 11177 ax-rnegex 11178 ax-rrecex 11179 ax-cnre 11180 ax-pre-lttri 11181 ax-pre-lttrn 11182 ax-pre-ltadd 11183 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-nel 3039 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8700 df-en 8937 df-dom 8938 df-sdom 8939 df-pnf 11248 df-mnf 11249 df-ltxr 11251 df-nn 12211 df-2 12273 df-3 12274 df-4 12275 df-5 12276 df-6 12277 df-7 12278 df-8 12279 df-9 12280 df-n0 12471 df-dec 12676 df-sets 17098 df-slot 17116 df-ndx 17128 df-hom 17222 df-resc 17759 |
This theorem is referenced by: reschomf 17780 subccatid 17797 issubc3 17800 fullresc 17802 funcres 17847 funcres2b 17848 funcres2 17849 idfusubc 17851 rngchomfval 20510 ringchomfval 20539 subthinc 47872 |
Copyright terms: Public domain | W3C validator |