Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reschom | Structured version Visualization version GIF version |
Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Ref | Expression |
---|---|
reschom | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7371 | . . 3 ⊢ (𝐶 ↾s 𝑆) ∈ V | |
2 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
3 | rescbas.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
4 | rescbas.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 4 | fvexi 6840 | . . . . . . 7 ⊢ 𝐵 ∈ V |
6 | 5 | ssex 5266 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
7 | 3, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ V) |
8 | 7, 7 | xpexd 7664 | . . . 4 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ V) |
9 | fnex 7150 | . . . 4 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V) | |
10 | 2, 8, 9 | syl2anc 584 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
11 | homid 17220 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
12 | 11 | setsid 17007 | . . 3 ⊢ (((𝐶 ↾s 𝑆) ∈ V ∧ 𝐻 ∈ V) → 𝐻 = (Hom ‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
13 | 1, 10, 12 | sylancr 587 | . 2 ⊢ (𝜑 → 𝐻 = (Hom ‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
14 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
15 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
16 | 14, 15, 7, 2 | rescval2 17638 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
17 | 16 | fveq2d 6830 | . 2 ⊢ (𝜑 → (Hom ‘𝐷) = (Hom ‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
18 | 13, 17 | eqtr4d 2779 | 1 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ⊆ wss 3898 〈cop 4580 × cxp 5619 Fn wfn 6475 ‘cfv 6480 (class class class)co 7338 sSet csts 16962 ndxcnx 16992 Basecbs 17010 ↾s cress 17039 Hom chom 17071 ↾cat cresc 17618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-ltxr 11116 df-nn 12076 df-2 12138 df-3 12139 df-4 12140 df-5 12141 df-6 12142 df-7 12143 df-8 12144 df-9 12145 df-n0 12336 df-dec 12540 df-sets 16963 df-slot 16981 df-ndx 16993 df-hom 17084 df-resc 17621 |
This theorem is referenced by: reschomf 17642 subccatid 17659 issubc3 17662 fullresc 17664 funcres 17709 funcres2b 17710 funcres2 17711 idfusubc 45842 rngchomfval 45942 ringchomfval 45988 subthinc 46739 |
Copyright terms: Public domain | W3C validator |