MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reschom Structured version   Visualization version   GIF version

Theorem reschom 17552
Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rescbas.d 𝐷 = (𝐶cat 𝐻)
rescbas.b 𝐵 = (Base‘𝐶)
rescbas.c (𝜑𝐶𝑉)
rescbas.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescbas.s (𝜑𝑆𝐵)
Assertion
Ref Expression
reschom (𝜑𝐻 = (Hom ‘𝐷))

Proof of Theorem reschom
StepHypRef Expression
1 ovex 7317 . . 3 (𝐶s 𝑆) ∈ V
2 rescbas.h . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
3 rescbas.s . . . . . 6 (𝜑𝑆𝐵)
4 rescbas.b . . . . . . . 8 𝐵 = (Base‘𝐶)
54fvexi 6797 . . . . . . 7 𝐵 ∈ V
65ssex 5246 . . . . . 6 (𝑆𝐵𝑆 ∈ V)
73, 6syl 17 . . . . 5 (𝜑𝑆 ∈ V)
87, 7xpexd 7610 . . . 4 (𝜑 → (𝑆 × 𝑆) ∈ V)
9 fnex 7102 . . . 4 ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V)
102, 8, 9syl2anc 584 . . 3 (𝜑𝐻 ∈ V)
11 homid 17131 . . . 4 Hom = Slot (Hom ‘ndx)
1211setsid 16918 . . 3 (((𝐶s 𝑆) ∈ V ∧ 𝐻 ∈ V) → 𝐻 = (Hom ‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)))
131, 10, 12sylancr 587 . 2 (𝜑𝐻 = (Hom ‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)))
14 rescbas.d . . . 4 𝐷 = (𝐶cat 𝐻)
15 rescbas.c . . . 4 (𝜑𝐶𝑉)
1614, 15, 7, 2rescval2 17549 . . 3 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
1716fveq2d 6787 . 2 (𝜑 → (Hom ‘𝐷) = (Hom ‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)))
1813, 17eqtr4d 2782 1 (𝜑𝐻 = (Hom ‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2107  Vcvv 3433  wss 3888  cop 4568   × cxp 5588   Fn wfn 6432  cfv 6437  (class class class)co 7284   sSet csts 16873  ndxcnx 16903  Basecbs 16921  s cress 16950  Hom chom 16982  cat cresc 17529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2710  ax-rep 5210  ax-sep 5224  ax-nul 5231  ax-pow 5289  ax-pr 5353  ax-un 7597  ax-cnex 10936  ax-resscn 10937  ax-1cn 10938  ax-icn 10939  ax-addcl 10940  ax-addrcl 10941  ax-mulcl 10942  ax-mulrcl 10943  ax-mulcom 10944  ax-addass 10945  ax-mulass 10946  ax-distr 10947  ax-i2m1 10948  ax-1ne0 10949  ax-1rid 10950  ax-rnegex 10951  ax-rrecex 10952  ax-cnre 10953  ax-pre-lttri 10954  ax-pre-lttrn 10955  ax-pre-ltadd 10956
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3073  df-rab 3074  df-v 3435  df-sbc 3718  df-csb 3834  df-dif 3891  df-un 3893  df-in 3895  df-ss 3905  df-pss 3907  df-nul 4258  df-if 4461  df-pw 4536  df-sn 4563  df-pr 4565  df-op 4569  df-uni 4841  df-iun 4927  df-br 5076  df-opab 5138  df-mpt 5159  df-tr 5193  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6206  df-ord 6273  df-on 6274  df-lim 6275  df-suc 6276  df-iota 6395  df-fun 6439  df-fn 6440  df-f 6441  df-f1 6442  df-fo 6443  df-f1o 6444  df-fv 6445  df-ov 7287  df-oprab 7288  df-mpo 7289  df-om 7722  df-2nd 7841  df-frecs 8106  df-wrecs 8137  df-recs 8211  df-rdg 8250  df-er 8507  df-en 8743  df-dom 8744  df-sdom 8745  df-pnf 11020  df-mnf 11021  df-ltxr 11023  df-nn 11983  df-2 12045  df-3 12046  df-4 12047  df-5 12048  df-6 12049  df-7 12050  df-8 12051  df-9 12052  df-n0 12243  df-dec 12447  df-sets 16874  df-slot 16892  df-ndx 16904  df-hom 16995  df-resc 17532
This theorem is referenced by:  reschomf  17553  subccatid  17570  issubc3  17573  fullresc  17575  funcres  17620  funcres2b  17621  funcres2  17622  idfusubc  45435  rngchomfval  45535  ringchomfval  45581  subthinc  46332
  Copyright terms: Public domain W3C validator