![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > reschom | Structured version Visualization version GIF version |
Description: Hom-sets of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Ref | Expression |
---|---|
reschom | ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 7002 | . . 3 ⊢ (𝐶 ↾s 𝑆) ∈ V | |
2 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
3 | rescbas.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
4 | rescbas.b | . . . . . . . 8 ⊢ 𝐵 = (Base‘𝐶) | |
5 | 4 | fvexi 6507 | . . . . . . 7 ⊢ 𝐵 ∈ V |
6 | 5 | ssex 5075 | . . . . . 6 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
7 | 3, 6 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ V) |
8 | 7, 7 | xpexd 7285 | . . . 4 ⊢ (𝜑 → (𝑆 × 𝑆) ∈ V) |
9 | fnex 6800 | . . . 4 ⊢ ((𝐻 Fn (𝑆 × 𝑆) ∧ (𝑆 × 𝑆) ∈ V) → 𝐻 ∈ V) | |
10 | 2, 8, 9 | syl2anc 576 | . . 3 ⊢ (𝜑 → 𝐻 ∈ V) |
11 | homid 16534 | . . . 4 ⊢ Hom = Slot (Hom ‘ndx) | |
12 | 11 | setsid 16384 | . . 3 ⊢ (((𝐶 ↾s 𝑆) ∈ V ∧ 𝐻 ∈ V) → 𝐻 = (Hom ‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
13 | 1, 10, 12 | sylancr 578 | . 2 ⊢ (𝜑 → 𝐻 = (Hom ‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
14 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
15 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
16 | 14, 15, 7, 2 | rescval2 16946 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
17 | 16 | fveq2d 6497 | . 2 ⊢ (𝜑 → (Hom ‘𝐷) = (Hom ‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
18 | 13, 17 | eqtr4d 2811 | 1 ⊢ (𝜑 → 𝐻 = (Hom ‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1507 ∈ wcel 2048 Vcvv 3409 ⊆ wss 3825 〈cop 4441 × cxp 5398 Fn wfn 6177 ‘cfv 6182 (class class class)co 6970 ndxcnx 16326 sSet csts 16327 Basecbs 16329 ↾s cress 16330 Hom chom 16422 ↾cat cresc 16926 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-pnf 10468 df-mnf 10469 df-ltxr 10471 df-nn 11432 df-2 11496 df-3 11497 df-4 11498 df-5 11499 df-6 11500 df-7 11501 df-8 11502 df-9 11503 df-n0 11701 df-dec 11905 df-ndx 16332 df-slot 16333 df-sets 16336 df-hom 16435 df-resc 16929 |
This theorem is referenced by: reschomf 16949 subccatid 16964 issubc3 16967 fullresc 16969 funcres 17014 funcres2b 17015 funcres2 17016 idfusubc 43441 rngchomfval 43541 ringchomfval 43587 |
Copyright terms: Public domain | W3C validator |