![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resccoOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of rescco 17779 as of 14-Oct-2024. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rescbas.d | β’ π· = (πΆ βΎcat π») |
rescbas.b | β’ π΅ = (BaseβπΆ) |
rescbas.c | β’ (π β πΆ β π) |
rescbas.h | β’ (π β π» Fn (π Γ π)) |
rescbas.s | β’ (π β π β π΅) |
rescco.o | β’ Β· = (compβπΆ) |
Ref | Expression |
---|---|
resccoOLD | β’ (π β Β· = (compβπ·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoid 17358 | . . 3 β’ comp = Slot (compβndx) | |
2 | 1nn0 12487 | . . . . . . 7 β’ 1 β β0 | |
3 | 4nn 12294 | . . . . . . 7 β’ 4 β β | |
4 | 2, 3 | decnncl 12696 | . . . . . 6 β’ ;14 β β |
5 | 4 | nnrei 12220 | . . . . 5 β’ ;14 β β |
6 | 4nn0 12490 | . . . . . 6 β’ 4 β β0 | |
7 | 5nn 12297 | . . . . . 6 β’ 5 β β | |
8 | 4lt5 12388 | . . . . . 6 β’ 4 < 5 | |
9 | 2, 6, 7, 8 | declt 12704 | . . . . 5 β’ ;14 < ;15 |
10 | 5, 9 | gtneii 11325 | . . . 4 β’ ;15 β ;14 |
11 | ccondx 17357 | . . . . 5 β’ (compβndx) = ;15 | |
12 | homndx 17355 | . . . . 5 β’ (Hom βndx) = ;14 | |
13 | 11, 12 | neeq12i 3007 | . . . 4 β’ ((compβndx) β (Hom βndx) β ;15 β ;14) |
14 | 10, 13 | mpbir 230 | . . 3 β’ (compβndx) β (Hom βndx) |
15 | 1, 14 | setsnid 17141 | . 2 β’ (compβ(πΆ βΎs π)) = (compβ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
16 | rescbas.s | . . . 4 β’ (π β π β π΅) | |
17 | rescbas.b | . . . . . 6 β’ π΅ = (BaseβπΆ) | |
18 | 17 | fvexi 6905 | . . . . 5 β’ π΅ β V |
19 | 18 | ssex 5321 | . . . 4 β’ (π β π΅ β π β V) |
20 | 16, 19 | syl 17 | . . 3 β’ (π β π β V) |
21 | eqid 2732 | . . . 4 β’ (πΆ βΎs π) = (πΆ βΎs π) | |
22 | rescco.o | . . . 4 β’ Β· = (compβπΆ) | |
23 | 21, 22 | ressco 17364 | . . 3 β’ (π β V β Β· = (compβ(πΆ βΎs π))) |
24 | 20, 23 | syl 17 | . 2 β’ (π β Β· = (compβ(πΆ βΎs π))) |
25 | rescbas.d | . . . 4 β’ π· = (πΆ βΎcat π») | |
26 | rescbas.c | . . . 4 β’ (π β πΆ β π) | |
27 | rescbas.h | . . . 4 β’ (π β π» Fn (π Γ π)) | |
28 | 25, 26, 20, 27 | rescval2 17774 | . . 3 β’ (π β π· = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
29 | 28 | fveq2d 6895 | . 2 β’ (π β (compβπ·) = (compβ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©))) |
30 | 15, 24, 29 | 3eqtr4a 2798 | 1 β’ (π β Β· = (compβπ·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wne 2940 Vcvv 3474 β wss 3948 β¨cop 4634 Γ cxp 5674 Fn wfn 6538 βcfv 6543 (class class class)co 7408 1c1 11110 4c4 12268 5c5 12269 ;cdc 12676 sSet csts 17095 ndxcnx 17125 Basecbs 17143 βΎs cress 17172 Hom chom 17207 compcco 17208 βΎcat cresc 17754 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-3 12275 df-4 12276 df-5 12277 df-6 12278 df-7 12279 df-8 12280 df-9 12281 df-n0 12472 df-z 12558 df-dec 12677 df-sets 17096 df-slot 17114 df-ndx 17126 df-base 17144 df-ress 17173 df-hom 17220 df-cco 17221 df-resc 17757 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |