![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > resccoOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of rescco 17789 as of 14-Oct-2024. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rescbas.d | β’ π· = (πΆ βΎcat π») |
rescbas.b | β’ π΅ = (BaseβπΆ) |
rescbas.c | β’ (π β πΆ β π) |
rescbas.h | β’ (π β π» Fn (π Γ π)) |
rescbas.s | β’ (π β π β π΅) |
rescco.o | β’ Β· = (compβπΆ) |
Ref | Expression |
---|---|
resccoOLD | β’ (π β Β· = (compβπ·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoid 17368 | . . 3 β’ comp = Slot (compβndx) | |
2 | 1nn0 12492 | . . . . . . 7 β’ 1 β β0 | |
3 | 4nn 12299 | . . . . . . 7 β’ 4 β β | |
4 | 2, 3 | decnncl 12701 | . . . . . 6 β’ ;14 β β |
5 | 4 | nnrei 12225 | . . . . 5 β’ ;14 β β |
6 | 4nn0 12495 | . . . . . 6 β’ 4 β β0 | |
7 | 5nn 12302 | . . . . . 6 β’ 5 β β | |
8 | 4lt5 12393 | . . . . . 6 β’ 4 < 5 | |
9 | 2, 6, 7, 8 | declt 12709 | . . . . 5 β’ ;14 < ;15 |
10 | 5, 9 | gtneii 11330 | . . . 4 β’ ;15 β ;14 |
11 | ccondx 17367 | . . . . 5 β’ (compβndx) = ;15 | |
12 | homndx 17365 | . . . . 5 β’ (Hom βndx) = ;14 | |
13 | 11, 12 | neeq12i 3001 | . . . 4 β’ ((compβndx) β (Hom βndx) β ;15 β ;14) |
14 | 10, 13 | mpbir 230 | . . 3 β’ (compβndx) β (Hom βndx) |
15 | 1, 14 | setsnid 17151 | . 2 β’ (compβ(πΆ βΎs π)) = (compβ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
16 | rescbas.s | . . . 4 β’ (π β π β π΅) | |
17 | rescbas.b | . . . . . 6 β’ π΅ = (BaseβπΆ) | |
18 | 17 | fvexi 6899 | . . . . 5 β’ π΅ β V |
19 | 18 | ssex 5314 | . . . 4 β’ (π β π΅ β π β V) |
20 | 16, 19 | syl 17 | . . 3 β’ (π β π β V) |
21 | eqid 2726 | . . . 4 β’ (πΆ βΎs π) = (πΆ βΎs π) | |
22 | rescco.o | . . . 4 β’ Β· = (compβπΆ) | |
23 | 21, 22 | ressco 17374 | . . 3 β’ (π β V β Β· = (compβ(πΆ βΎs π))) |
24 | 20, 23 | syl 17 | . 2 β’ (π β Β· = (compβ(πΆ βΎs π))) |
25 | rescbas.d | . . . 4 β’ π· = (πΆ βΎcat π») | |
26 | rescbas.c | . . . 4 β’ (π β πΆ β π) | |
27 | rescbas.h | . . . 4 β’ (π β π» Fn (π Γ π)) | |
28 | 25, 26, 20, 27 | rescval2 17784 | . . 3 β’ (π β π· = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
29 | 28 | fveq2d 6889 | . 2 β’ (π β (compβπ·) = (compβ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©))) |
30 | 15, 24, 29 | 3eqtr4a 2792 | 1 β’ (π β Β· = (compβπ·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wne 2934 Vcvv 3468 β wss 3943 β¨cop 4629 Γ cxp 5667 Fn wfn 6532 βcfv 6537 (class class class)co 7405 1c1 11113 4c4 12273 5c5 12274 ;cdc 12681 sSet csts 17105 ndxcnx 17135 Basecbs 17153 βΎs cress 17182 Hom chom 17217 compcco 17218 βΎcat cresc 17764 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-9 12286 df-n0 12477 df-z 12563 df-dec 12682 df-sets 17106 df-slot 17124 df-ndx 17136 df-base 17154 df-ress 17183 df-hom 17230 df-cco 17231 df-resc 17767 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |