MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  resccoOLD Structured version   Visualization version   GIF version

Theorem resccoOLD 17556
Description: Obsolete proof of rescco 17555 as of 14-Oct-2024. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
rescbas.d 𝐷 = (𝐶cat 𝐻)
rescbas.b 𝐵 = (Base‘𝐶)
rescbas.c (𝜑𝐶𝑉)
rescbas.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescbas.s (𝜑𝑆𝐵)
rescco.o · = (comp‘𝐶)
Assertion
Ref Expression
resccoOLD (𝜑· = (comp‘𝐷))

Proof of Theorem resccoOLD
StepHypRef Expression
1 ccoid 17134 . . 3 comp = Slot (comp‘ndx)
2 1nn0 12259 . . . . . . 7 1 ∈ ℕ0
3 4nn 12066 . . . . . . 7 4 ∈ ℕ
42, 3decnncl 12467 . . . . . 6 14 ∈ ℕ
54nnrei 11992 . . . . 5 14 ∈ ℝ
6 4nn0 12262 . . . . . 6 4 ∈ ℕ0
7 5nn 12069 . . . . . 6 5 ∈ ℕ
8 4lt5 12160 . . . . . 6 4 < 5
92, 6, 7, 8declt 12475 . . . . 5 14 < 15
105, 9gtneii 11097 . . . 4 15 ≠ 14
11 ccondx 17133 . . . . 5 (comp‘ndx) = 15
12 homndx 17131 . . . . 5 (Hom ‘ndx) = 14
1311, 12neeq12i 3010 . . . 4 ((comp‘ndx) ≠ (Hom ‘ndx) ↔ 15 ≠ 14)
1410, 13mpbir 230 . . 3 (comp‘ndx) ≠ (Hom ‘ndx)
151, 14setsnid 16920 . 2 (comp‘(𝐶s 𝑆)) = (comp‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
16 rescbas.s . . . 4 (𝜑𝑆𝐵)
17 rescbas.b . . . . . 6 𝐵 = (Base‘𝐶)
1817fvexi 6780 . . . . 5 𝐵 ∈ V
1918ssex 5243 . . . 4 (𝑆𝐵𝑆 ∈ V)
2016, 19syl 17 . . 3 (𝜑𝑆 ∈ V)
21 eqid 2738 . . . 4 (𝐶s 𝑆) = (𝐶s 𝑆)
22 rescco.o . . . 4 · = (comp‘𝐶)
2321, 22ressco 17140 . . 3 (𝑆 ∈ V → · = (comp‘(𝐶s 𝑆)))
2420, 23syl 17 . 2 (𝜑· = (comp‘(𝐶s 𝑆)))
25 rescbas.d . . . 4 𝐷 = (𝐶cat 𝐻)
26 rescbas.c . . . 4 (𝜑𝐶𝑉)
27 rescbas.h . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
2825, 26, 20, 27rescval2 17550 . . 3 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
2928fveq2d 6770 . 2 (𝜑 → (comp‘𝐷) = (comp‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)))
3015, 24, 293eqtr4a 2804 1 (𝜑· = (comp‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wne 2943  Vcvv 3429  wss 3886  cop 4567   × cxp 5582   Fn wfn 6421  cfv 6426  (class class class)co 7267  1c1 10882  4c4 12040  5c5 12041  cdc 12447   sSet csts 16874  ndxcnx 16904  Basecbs 16922  s cress 16951  Hom chom 16983  compcco 16984  cat cresc 17530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pow 5286  ax-pr 5350  ax-un 7578  ax-cnex 10937  ax-resscn 10938  ax-1cn 10939  ax-icn 10940  ax-addcl 10941  ax-addrcl 10942  ax-mulcl 10943  ax-mulrcl 10944  ax-mulcom 10945  ax-addass 10946  ax-mulass 10947  ax-distr 10948  ax-i2m1 10949  ax-1ne0 10950  ax-1rid 10951  ax-rnegex 10952  ax-rrecex 10953  ax-cnre 10954  ax-pre-lttri 10955  ax-pre-lttrn 10956  ax-pre-ltadd 10957  ax-pre-mulgt0 10958
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-pss 3905  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-tr 5191  df-id 5484  df-eprel 5490  df-po 5498  df-so 5499  df-fr 5539  df-we 5541  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-pred 6195  df-ord 6262  df-on 6263  df-lim 6264  df-suc 6265  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-riota 7224  df-ov 7270  df-oprab 7271  df-mpo 7272  df-om 7703  df-2nd 7821  df-frecs 8084  df-wrecs 8115  df-recs 8189  df-rdg 8228  df-er 8485  df-en 8721  df-dom 8722  df-sdom 8723  df-pnf 11021  df-mnf 11022  df-xr 11023  df-ltxr 11024  df-le 11025  df-sub 11217  df-neg 11218  df-nn 11984  df-2 12046  df-3 12047  df-4 12048  df-5 12049  df-6 12050  df-7 12051  df-8 12052  df-9 12053  df-n0 12244  df-z 12330  df-dec 12448  df-sets 16875  df-slot 16893  df-ndx 16905  df-base 16923  df-ress 16952  df-hom 16996  df-cco 16997  df-resc 17533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator