Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resccoOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of rescco 17545 as of 14-Oct-2024. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
rescco.o | ⊢ · = (comp‘𝐶) |
Ref | Expression |
---|---|
resccoOLD | ⊢ (𝜑 → · = (comp‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoid 17124 | . . 3 ⊢ comp = Slot (comp‘ndx) | |
2 | 1nn0 12249 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
3 | 4nn 12056 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
4 | 2, 3 | decnncl 12457 | . . . . . 6 ⊢ ;14 ∈ ℕ |
5 | 4 | nnrei 11982 | . . . . 5 ⊢ ;14 ∈ ℝ |
6 | 4nn0 12252 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
7 | 5nn 12059 | . . . . . 6 ⊢ 5 ∈ ℕ | |
8 | 4lt5 12150 | . . . . . 6 ⊢ 4 < 5 | |
9 | 2, 6, 7, 8 | declt 12465 | . . . . 5 ⊢ ;14 < ;15 |
10 | 5, 9 | gtneii 11087 | . . . 4 ⊢ ;15 ≠ ;14 |
11 | ccondx 17123 | . . . . 5 ⊢ (comp‘ndx) = ;15 | |
12 | homndx 17121 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
13 | 11, 12 | neeq12i 3010 | . . . 4 ⊢ ((comp‘ndx) ≠ (Hom ‘ndx) ↔ ;15 ≠ ;14) |
14 | 10, 13 | mpbir 230 | . . 3 ⊢ (comp‘ndx) ≠ (Hom ‘ndx) |
15 | 1, 14 | setsnid 16910 | . 2 ⊢ (comp‘(𝐶 ↾s 𝑆)) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
16 | rescbas.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
17 | rescbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
18 | 17 | fvexi 6788 | . . . . 5 ⊢ 𝐵 ∈ V |
19 | 18 | ssex 5245 | . . . 4 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
20 | 16, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
21 | eqid 2738 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
22 | rescco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
23 | 21, 22 | ressco 17130 | . . 3 ⊢ (𝑆 ∈ V → · = (comp‘(𝐶 ↾s 𝑆))) |
24 | 20, 23 | syl 17 | . 2 ⊢ (𝜑 → · = (comp‘(𝐶 ↾s 𝑆))) |
25 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
26 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
27 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
28 | 25, 26, 20, 27 | rescval2 17540 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
29 | 28 | fveq2d 6778 | . 2 ⊢ (𝜑 → (comp‘𝐷) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
30 | 15, 24, 29 | 3eqtr4a 2804 | 1 ⊢ (𝜑 → · = (comp‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3432 ⊆ wss 3887 〈cop 4567 × cxp 5587 Fn wfn 6428 ‘cfv 6433 (class class class)co 7275 1c1 10872 4c4 12030 5c5 12031 ;cdc 12437 sSet csts 16864 ndxcnx 16894 Basecbs 16912 ↾s cress 16941 Hom chom 16973 compcco 16974 ↾cat cresc 17520 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-hom 16986 df-cco 16987 df-resc 17523 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |