Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > resccoOLD | Structured version Visualization version GIF version |
Description: Obsolete proof of rescco 17555 as of 14-Oct-2024. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
rescco.o | ⊢ · = (comp‘𝐶) |
Ref | Expression |
---|---|
resccoOLD | ⊢ (𝜑 → · = (comp‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoid 17134 | . . 3 ⊢ comp = Slot (comp‘ndx) | |
2 | 1nn0 12259 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
3 | 4nn 12066 | . . . . . . 7 ⊢ 4 ∈ ℕ | |
4 | 2, 3 | decnncl 12467 | . . . . . 6 ⊢ ;14 ∈ ℕ |
5 | 4 | nnrei 11992 | . . . . 5 ⊢ ;14 ∈ ℝ |
6 | 4nn0 12262 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
7 | 5nn 12069 | . . . . . 6 ⊢ 5 ∈ ℕ | |
8 | 4lt5 12160 | . . . . . 6 ⊢ 4 < 5 | |
9 | 2, 6, 7, 8 | declt 12475 | . . . . 5 ⊢ ;14 < ;15 |
10 | 5, 9 | gtneii 11097 | . . . 4 ⊢ ;15 ≠ ;14 |
11 | ccondx 17133 | . . . . 5 ⊢ (comp‘ndx) = ;15 | |
12 | homndx 17131 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
13 | 11, 12 | neeq12i 3010 | . . . 4 ⊢ ((comp‘ndx) ≠ (Hom ‘ndx) ↔ ;15 ≠ ;14) |
14 | 10, 13 | mpbir 230 | . . 3 ⊢ (comp‘ndx) ≠ (Hom ‘ndx) |
15 | 1, 14 | setsnid 16920 | . 2 ⊢ (comp‘(𝐶 ↾s 𝑆)) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
16 | rescbas.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
17 | rescbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
18 | 17 | fvexi 6780 | . . . . 5 ⊢ 𝐵 ∈ V |
19 | 18 | ssex 5243 | . . . 4 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
20 | 16, 19 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
21 | eqid 2738 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
22 | rescco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
23 | 21, 22 | ressco 17140 | . . 3 ⊢ (𝑆 ∈ V → · = (comp‘(𝐶 ↾s 𝑆))) |
24 | 20, 23 | syl 17 | . 2 ⊢ (𝜑 → · = (comp‘(𝐶 ↾s 𝑆))) |
25 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
26 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
27 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
28 | 25, 26, 20, 27 | rescval2 17550 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
29 | 28 | fveq2d 6770 | . 2 ⊢ (𝜑 → (comp‘𝐷) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
30 | 15, 24, 29 | 3eqtr4a 2804 | 1 ⊢ (𝜑 → · = (comp‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ≠ wne 2943 Vcvv 3429 ⊆ wss 3886 〈cop 4567 × cxp 5582 Fn wfn 6421 ‘cfv 6426 (class class class)co 7267 1c1 10882 4c4 12040 5c5 12041 ;cdc 12447 sSet csts 16874 ndxcnx 16904 Basecbs 16922 ↾s cress 16951 Hom chom 16983 compcco 16984 ↾cat cresc 17530 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5208 ax-sep 5221 ax-nul 5228 ax-pow 5286 ax-pr 5350 ax-un 7578 ax-cnex 10937 ax-resscn 10938 ax-1cn 10939 ax-icn 10940 ax-addcl 10941 ax-addrcl 10942 ax-mulcl 10943 ax-mulrcl 10944 ax-mulcom 10945 ax-addass 10946 ax-mulass 10947 ax-distr 10948 ax-i2m1 10949 ax-1ne0 10950 ax-1rid 10951 ax-rnegex 10952 ax-rrecex 10953 ax-cnre 10954 ax-pre-lttri 10955 ax-pre-lttrn 10956 ax-pre-ltadd 10957 ax-pre-mulgt0 10958 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3431 df-sbc 3716 df-csb 3832 df-dif 3889 df-un 3891 df-in 3893 df-ss 3903 df-pss 3905 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5074 df-opab 5136 df-mpt 5157 df-tr 5191 df-id 5484 df-eprel 5490 df-po 5498 df-so 5499 df-fr 5539 df-we 5541 df-xp 5590 df-rel 5591 df-cnv 5592 df-co 5593 df-dm 5594 df-rn 5595 df-res 5596 df-ima 5597 df-pred 6195 df-ord 6262 df-on 6263 df-lim 6264 df-suc 6265 df-iota 6384 df-fun 6428 df-fn 6429 df-f 6430 df-f1 6431 df-fo 6432 df-f1o 6433 df-fv 6434 df-riota 7224 df-ov 7270 df-oprab 7271 df-mpo 7272 df-om 7703 df-2nd 7821 df-frecs 8084 df-wrecs 8115 df-recs 8189 df-rdg 8228 df-er 8485 df-en 8721 df-dom 8722 df-sdom 8723 df-pnf 11021 df-mnf 11022 df-xr 11023 df-ltxr 11024 df-le 11025 df-sub 11217 df-neg 11218 df-nn 11984 df-2 12046 df-3 12047 df-4 12048 df-5 12049 df-6 12050 df-7 12051 df-8 12052 df-9 12053 df-n0 12244 df-z 12330 df-dec 12448 df-sets 16875 df-slot 16893 df-ndx 16905 df-base 16923 df-ress 16952 df-hom 16996 df-cco 16997 df-resc 17533 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |