MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescco Structured version   Visualization version   GIF version

Theorem rescco 17104
Description: Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
rescbas.d 𝐷 = (𝐶cat 𝐻)
rescbas.b 𝐵 = (Base‘𝐶)
rescbas.c (𝜑𝐶𝑉)
rescbas.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescbas.s (𝜑𝑆𝐵)
rescco.o · = (comp‘𝐶)
Assertion
Ref Expression
rescco (𝜑· = (comp‘𝐷))

Proof of Theorem rescco
StepHypRef Expression
1 ccoid 16692 . . 3 comp = Slot (comp‘ndx)
2 1nn0 11916 . . . . . . 7 1 ∈ ℕ0
3 4nn 11723 . . . . . . 7 4 ∈ ℕ
42, 3decnncl 12121 . . . . . 6 14 ∈ ℕ
54nnrei 11649 . . . . 5 14 ∈ ℝ
6 4nn0 11919 . . . . . 6 4 ∈ ℕ0
7 5nn 11726 . . . . . 6 5 ∈ ℕ
8 4lt5 11817 . . . . . 6 4 < 5
92, 6, 7, 8declt 12129 . . . . 5 14 < 15
105, 9gtneii 10754 . . . 4 15 ≠ 14
11 ccondx 16691 . . . . 5 (comp‘ndx) = 15
12 homndx 16689 . . . . 5 (Hom ‘ndx) = 14
1311, 12neeq12i 3084 . . . 4 ((comp‘ndx) ≠ (Hom ‘ndx) ↔ 15 ≠ 14)
1410, 13mpbir 233 . . 3 (comp‘ndx) ≠ (Hom ‘ndx)
151, 14setsnid 16541 . 2 (comp‘(𝐶s 𝑆)) = (comp‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
16 rescbas.s . . . 4 (𝜑𝑆𝐵)
17 rescbas.b . . . . . 6 𝐵 = (Base‘𝐶)
1817fvexi 6686 . . . . 5 𝐵 ∈ V
1918ssex 5227 . . . 4 (𝑆𝐵𝑆 ∈ V)
2016, 19syl 17 . . 3 (𝜑𝑆 ∈ V)
21 eqid 2823 . . . 4 (𝐶s 𝑆) = (𝐶s 𝑆)
22 rescco.o . . . 4 · = (comp‘𝐶)
2321, 22ressco 16694 . . 3 (𝑆 ∈ V → · = (comp‘(𝐶s 𝑆)))
2420, 23syl 17 . 2 (𝜑· = (comp‘(𝐶s 𝑆)))
25 rescbas.d . . . 4 𝐷 = (𝐶cat 𝐻)
26 rescbas.c . . . 4 (𝜑𝐶𝑉)
27 rescbas.h . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
2825, 26, 20, 27rescval2 17100 . . 3 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
2928fveq2d 6676 . 2 (𝜑 → (comp‘𝐷) = (comp‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)))
3015, 24, 293eqtr4a 2884 1 (𝜑· = (comp‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  wss 3938  cop 4575   × cxp 5555   Fn wfn 6352  cfv 6357  (class class class)co 7158  1c1 10540  4c4 11697  5c5 11698  cdc 12101  ndxcnx 16482   sSet csts 16483  Basecbs 16485  s cress 16486  Hom chom 16578  compcco 16579  cat cresc 17080
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-hom 16591  df-cco 16592  df-resc 17083
This theorem is referenced by:  subccatid  17118  issubc3  17121  fullresc  17123  funcres  17168  funcres2b  17169  rngccofval  44248  ringccofval  44294
  Copyright terms: Public domain W3C validator