Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rescco | Structured version Visualization version GIF version |
Description: Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
rescco.o | ⊢ · = (comp‘𝐶) |
Ref | Expression |
---|---|
rescco | ⊢ (𝜑 → · = (comp‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoid 16945 | . . 3 ⊢ comp = Slot (comp‘ndx) | |
2 | slotsbhcdif 16946 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
3 | simp3 1140 | . . . . 5 ⊢ (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx)) | |
4 | 3 | necomd 2997 | . . . 4 ⊢ (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx)) |
5 | 2, 4 | ax-mp 5 | . . 3 ⊢ (comp‘ndx) ≠ (Hom ‘ndx) |
6 | 1, 5 | setsnid 16783 | . 2 ⊢ (comp‘(𝐶 ↾s 𝑆)) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
7 | rescbas.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
8 | rescbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
9 | 8 | fvexi 6749 | . . . . 5 ⊢ 𝐵 ∈ V |
10 | 9 | ssex 5228 | . . . 4 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
12 | eqid 2738 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
13 | rescco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
14 | 12, 13 | ressco 16948 | . . 3 ⊢ (𝑆 ∈ V → · = (comp‘(𝐶 ↾s 𝑆))) |
15 | 11, 14 | syl 17 | . 2 ⊢ (𝜑 → · = (comp‘(𝐶 ↾s 𝑆))) |
16 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
17 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
18 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
19 | 16, 17, 11, 18 | rescval2 17357 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
20 | 19 | fveq2d 6739 | . 2 ⊢ (𝜑 → (comp‘𝐷) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
21 | 6, 15, 20 | 3eqtr4a 2805 | 1 ⊢ (𝜑 → · = (comp‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ≠ wne 2941 Vcvv 3420 ⊆ wss 3880 〈cop 4561 × cxp 5563 Fn wfn 6392 ‘cfv 6397 (class class class)co 7231 sSet csts 16740 ndxcnx 16768 Basecbs 16784 ↾s cress 16808 Hom chom 16837 compcco 16838 ↾cat cresc 17337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-rep 5193 ax-sep 5206 ax-nul 5213 ax-pow 5272 ax-pr 5336 ax-un 7541 ax-cnex 10809 ax-resscn 10810 ax-1cn 10811 ax-icn 10812 ax-addcl 10813 ax-addrcl 10814 ax-mulcl 10815 ax-mulrcl 10816 ax-mulcom 10817 ax-addass 10818 ax-mulass 10819 ax-distr 10820 ax-i2m1 10821 ax-1ne0 10822 ax-1rid 10823 ax-rnegex 10824 ax-rrecex 10825 ax-cnre 10826 ax-pre-lttri 10827 ax-pre-lttrn 10828 ax-pre-ltadd 10829 ax-pre-mulgt0 10830 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rab 3071 df-v 3422 df-sbc 3709 df-csb 3826 df-dif 3883 df-un 3885 df-in 3887 df-ss 3897 df-pss 3899 df-nul 4252 df-if 4454 df-pw 4529 df-sn 4556 df-pr 4558 df-tp 4560 df-op 4562 df-uni 4834 df-iun 4920 df-br 5068 df-opab 5130 df-mpt 5150 df-tr 5176 df-id 5469 df-eprel 5474 df-po 5482 df-so 5483 df-fr 5523 df-we 5525 df-xp 5571 df-rel 5572 df-cnv 5573 df-co 5574 df-dm 5575 df-rn 5576 df-res 5577 df-ima 5578 df-pred 6175 df-ord 6233 df-on 6234 df-lim 6235 df-suc 6236 df-iota 6355 df-fun 6399 df-fn 6400 df-f 6401 df-f1 6402 df-fo 6403 df-f1o 6404 df-fv 6405 df-riota 7188 df-ov 7234 df-oprab 7235 df-mpo 7236 df-om 7663 df-wrecs 8067 df-recs 8128 df-rdg 8166 df-er 8411 df-en 8647 df-dom 8648 df-sdom 8649 df-pnf 10893 df-mnf 10894 df-xr 10895 df-ltxr 10896 df-le 10897 df-sub 11088 df-neg 11089 df-nn 11855 df-2 11917 df-3 11918 df-4 11919 df-5 11920 df-6 11921 df-7 11922 df-8 11923 df-9 11924 df-n0 12115 df-z 12201 df-dec 12318 df-sets 16741 df-slot 16759 df-ndx 16769 df-base 16785 df-ress 16809 df-hom 16850 df-cco 16851 df-resc 17340 |
This theorem is referenced by: subccatid 17376 issubc3 17379 fullresc 17381 funcres 17426 funcres2b 17427 rngccofval 45229 ringccofval 45275 |
Copyright terms: Public domain | W3C validator |