| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescco | Structured version Visualization version GIF version | ||
| Description: Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
| rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| rescco.o | ⊢ · = (comp‘𝐶) |
| Ref | Expression |
|---|---|
| rescco | ⊢ (𝜑 → · = (comp‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccoid 17384 | . . 3 ⊢ comp = Slot (comp‘ndx) | |
| 2 | slotsbhcdif 17385 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 3 | simp3 1138 | . . . . 5 ⊢ (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 4 | 3 | necomd 2981 | . . . 4 ⊢ (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx)) |
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ (comp‘ndx) ≠ (Hom ‘ndx) |
| 6 | 1, 5 | setsnid 17185 | . 2 ⊢ (comp‘(𝐶 ↾s 𝑆)) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 7 | rescbas.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 8 | rescbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 9 | 8 | fvexi 6875 | . . . . 5 ⊢ 𝐵 ∈ V |
| 10 | 9 | ssex 5279 | . . . 4 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
| 11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
| 12 | eqid 2730 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
| 13 | rescco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 14 | 12, 13 | ressco 17389 | . . 3 ⊢ (𝑆 ∈ V → · = (comp‘(𝐶 ↾s 𝑆))) |
| 15 | 11, 14 | syl 17 | . 2 ⊢ (𝜑 → · = (comp‘(𝐶 ↾s 𝑆))) |
| 16 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
| 17 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 18 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 19 | 16, 17, 11, 18 | rescval2 17797 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 20 | 19 | fveq2d 6865 | . 2 ⊢ (𝜑 → (comp‘𝐷) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
| 21 | 6, 15, 20 | 3eqtr4a 2791 | 1 ⊢ (𝜑 → · = (comp‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ⊆ wss 3917 〈cop 4598 × cxp 5639 Fn wfn 6509 ‘cfv 6514 (class class class)co 7390 sSet csts 17140 ndxcnx 17170 Basecbs 17186 ↾s cress 17207 Hom chom 17238 compcco 17239 ↾cat cresc 17777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-hom 17251 df-cco 17252 df-resc 17780 |
| This theorem is referenced by: subccatid 17815 issubc3 17818 fullresc 17820 funcres 17865 funcres2b 17866 rngccofval 20542 ringccofval 20571 ssccatid 49065 resccatlem 49066 |
| Copyright terms: Public domain | W3C validator |