MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescco Structured version   Visualization version   GIF version

Theorem rescco 17848
Description: Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.)
Hypotheses
Ref Expression
rescbas.d 𝐷 = (𝐶cat 𝐻)
rescbas.b 𝐵 = (Base‘𝐶)
rescbas.c (𝜑𝐶𝑉)
rescbas.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescbas.s (𝜑𝑆𝐵)
rescco.o · = (comp‘𝐶)
Assertion
Ref Expression
rescco (𝜑· = (comp‘𝐷))

Proof of Theorem rescco
StepHypRef Expression
1 ccoid 17431 . . 3 comp = Slot (comp‘ndx)
2 slotsbhcdif 17432 . . . 4 ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))
3 simp3 1138 . . . . 5 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx))
43necomd 2986 . . . 4 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx))
52, 4ax-mp 5 . . 3 (comp‘ndx) ≠ (Hom ‘ndx)
61, 5setsnid 17228 . 2 (comp‘(𝐶s 𝑆)) = (comp‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
7 rescbas.s . . . 4 (𝜑𝑆𝐵)
8 rescbas.b . . . . . 6 𝐵 = (Base‘𝐶)
98fvexi 6900 . . . . 5 𝐵 ∈ V
109ssex 5301 . . . 4 (𝑆𝐵𝑆 ∈ V)
117, 10syl 17 . . 3 (𝜑𝑆 ∈ V)
12 eqid 2734 . . . 4 (𝐶s 𝑆) = (𝐶s 𝑆)
13 rescco.o . . . 4 · = (comp‘𝐶)
1412, 13ressco 17436 . . 3 (𝑆 ∈ V → · = (comp‘(𝐶s 𝑆)))
1511, 14syl 17 . 2 (𝜑· = (comp‘(𝐶s 𝑆)))
16 rescbas.d . . . 4 𝐷 = (𝐶cat 𝐻)
17 rescbas.c . . . 4 (𝜑𝐶𝑉)
18 rescbas.h . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
1916, 17, 11, 18rescval2 17844 . . 3 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
2019fveq2d 6890 . 2 (𝜑 → (comp‘𝐷) = (comp‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)))
216, 15, 203eqtr4a 2795 1 (𝜑· = (comp‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2107  wne 2931  Vcvv 3463  wss 3931  cop 4612   × cxp 5663   Fn wfn 6536  cfv 6541  (class class class)co 7413   sSet csts 17183  ndxcnx 17213  Basecbs 17230  s cress 17253  Hom chom 17285  compcco 17286  cat cresc 17824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737  ax-cnex 11193  ax-resscn 11194  ax-1cn 11195  ax-icn 11196  ax-addcl 11197  ax-addrcl 11198  ax-mulcl 11199  ax-mulrcl 11200  ax-mulcom 11201  ax-addass 11202  ax-mulass 11203  ax-distr 11204  ax-i2m1 11205  ax-1ne0 11206  ax-1rid 11207  ax-rnegex 11208  ax-rrecex 11209  ax-cnre 11210  ax-pre-lttri 11211  ax-pre-lttrn 11212  ax-pre-ltadd 11213  ax-pre-mulgt0 11214
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-tr 5240  df-id 5558  df-eprel 5564  df-po 5572  df-so 5573  df-fr 5617  df-we 5619  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-pred 6301  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7370  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7870  df-2nd 7997  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-er 8727  df-en 8968  df-dom 8969  df-sdom 8970  df-pnf 11279  df-mnf 11280  df-xr 11281  df-ltxr 11282  df-le 11283  df-sub 11476  df-neg 11477  df-nn 12249  df-2 12311  df-3 12312  df-4 12313  df-5 12314  df-6 12315  df-7 12316  df-8 12317  df-9 12318  df-n0 12510  df-z 12597  df-dec 12717  df-sets 17184  df-slot 17202  df-ndx 17214  df-base 17231  df-ress 17254  df-hom 17298  df-cco 17299  df-resc 17827
This theorem is referenced by:  subccatid  17863  issubc3  17866  fullresc  17868  funcres  17913  funcres2b  17914  rngccofval  20595  ringccofval  20624
  Copyright terms: Public domain W3C validator