![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescco | Structured version Visualization version GIF version |
Description: Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
rescco.o | ⊢ · = (comp‘𝐶) |
Ref | Expression |
---|---|
rescco | ⊢ (𝜑 → · = (comp‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ccoid 17365 | . . 3 ⊢ comp = Slot (comp‘ndx) | |
2 | slotsbhcdif 17366 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
3 | simp3 1136 | . . . . 5 ⊢ (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx)) | |
4 | 3 | necomd 2994 | . . . 4 ⊢ (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx)) |
5 | 2, 4 | ax-mp 5 | . . 3 ⊢ (comp‘ndx) ≠ (Hom ‘ndx) |
6 | 1, 5 | setsnid 17148 | . 2 ⊢ (comp‘(𝐶 ↾s 𝑆)) = (comp‘((𝐶 ↾s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)) |
7 | rescbas.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
8 | rescbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
9 | 8 | fvexi 6906 | . . . . 5 ⊢ 𝐵 ∈ V |
10 | 9 | ssex 5322 | . . . 4 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
12 | eqid 2730 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
13 | rescco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
14 | 12, 13 | ressco 17371 | . . 3 ⊢ (𝑆 ∈ V → · = (comp‘(𝐶 ↾s 𝑆))) |
15 | 11, 14 | syl 17 | . 2 ⊢ (𝜑 → · = (comp‘(𝐶 ↾s 𝑆))) |
16 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
17 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
18 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
19 | 16, 17, 11, 18 | rescval2 17781 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)) |
20 | 19 | fveq2d 6896 | . 2 ⊢ (𝜑 → (comp‘𝐷) = (comp‘((𝐶 ↾s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))) |
21 | 6, 15, 20 | 3eqtr4a 2796 | 1 ⊢ (𝜑 → · = (comp‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1085 = wceq 1539 ∈ wcel 2104 ≠ wne 2938 Vcvv 3472 ⊆ wss 3949 ⟨cop 4635 × cxp 5675 Fn wfn 6539 ‘cfv 6544 (class class class)co 7413 sSet csts 17102 ndxcnx 17132 Basecbs 17150 ↾s cress 17179 Hom chom 17214 compcco 17215 ↾cat cresc 17761 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7729 ax-cnex 11170 ax-resscn 11171 ax-1cn 11172 ax-icn 11173 ax-addcl 11174 ax-addrcl 11175 ax-mulcl 11176 ax-mulrcl 11177 ax-mulcom 11178 ax-addass 11179 ax-mulass 11180 ax-distr 11181 ax-i2m1 11182 ax-1ne0 11183 ax-1rid 11184 ax-rnegex 11185 ax-rrecex 11186 ax-cnre 11187 ax-pre-lttri 11188 ax-pre-lttrn 11189 ax-pre-ltadd 11190 ax-pre-mulgt0 11191 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7860 df-2nd 7980 df-frecs 8270 df-wrecs 8301 df-recs 8375 df-rdg 8414 df-er 8707 df-en 8944 df-dom 8945 df-sdom 8946 df-pnf 11256 df-mnf 11257 df-xr 11258 df-ltxr 11259 df-le 11260 df-sub 11452 df-neg 11453 df-nn 12219 df-2 12281 df-3 12282 df-4 12283 df-5 12284 df-6 12285 df-7 12286 df-8 12287 df-9 12288 df-n0 12479 df-z 12565 df-dec 12684 df-sets 17103 df-slot 17121 df-ndx 17133 df-base 17151 df-ress 17180 df-hom 17227 df-cco 17228 df-resc 17764 |
This theorem is referenced by: subccatid 17802 issubc3 17805 fullresc 17807 funcres 17852 funcres2b 17853 rngccofval 46958 ringccofval 47004 |
Copyright terms: Public domain | W3C validator |