MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescco Structured version   Visualization version   GIF version

Theorem rescco 17770
Description: Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.)
Hypotheses
Ref Expression
rescbas.d 𝐷 = (𝐶cat 𝐻)
rescbas.b 𝐵 = (Base‘𝐶)
rescbas.c (𝜑𝐶𝑉)
rescbas.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescbas.s (𝜑𝑆𝐵)
rescco.o · = (comp‘𝐶)
Assertion
Ref Expression
rescco (𝜑· = (comp‘𝐷))

Proof of Theorem rescco
StepHypRef Expression
1 ccoid 17353 . . 3 comp = Slot (comp‘ndx)
2 slotsbhcdif 17354 . . . 4 ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx))
3 simp3 1138 . . . . 5 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx))
43necomd 2980 . . . 4 (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx))
52, 4ax-mp 5 . . 3 (comp‘ndx) ≠ (Hom ‘ndx)
61, 5setsnid 17154 . 2 (comp‘(𝐶s 𝑆)) = (comp‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
7 rescbas.s . . . 4 (𝜑𝑆𝐵)
8 rescbas.b . . . . . 6 𝐵 = (Base‘𝐶)
98fvexi 6854 . . . . 5 𝐵 ∈ V
109ssex 5271 . . . 4 (𝑆𝐵𝑆 ∈ V)
117, 10syl 17 . . 3 (𝜑𝑆 ∈ V)
12 eqid 2729 . . . 4 (𝐶s 𝑆) = (𝐶s 𝑆)
13 rescco.o . . . 4 · = (comp‘𝐶)
1412, 13ressco 17358 . . 3 (𝑆 ∈ V → · = (comp‘(𝐶s 𝑆)))
1511, 14syl 17 . 2 (𝜑· = (comp‘(𝐶s 𝑆)))
16 rescbas.d . . . 4 𝐷 = (𝐶cat 𝐻)
17 rescbas.c . . . 4 (𝜑𝐶𝑉)
18 rescbas.h . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
1916, 17, 11, 18rescval2 17766 . . 3 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
2019fveq2d 6844 . 2 (𝜑 → (comp‘𝐷) = (comp‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)))
216, 15, 203eqtr4a 2790 1 (𝜑· = (comp‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  wss 3911  cop 4591   × cxp 5629   Fn wfn 6494  cfv 6499  (class class class)co 7369   sSet csts 17109  ndxcnx 17139  Basecbs 17155  s cress 17176  Hom chom 17207  compcco 17208  cat cresc 17746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-hom 17220  df-cco 17221  df-resc 17749
This theorem is referenced by:  subccatid  17784  issubc3  17787  fullresc  17789  funcres  17834  funcres2b  17835  rngccofval  20511  ringccofval  20540  ssccatid  49034  resccatlem  49035
  Copyright terms: Public domain W3C validator