| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescco | Structured version Visualization version GIF version | ||
| Description: Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
| rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| rescco.o | ⊢ · = (comp‘𝐶) |
| Ref | Expression |
|---|---|
| rescco | ⊢ (𝜑 → · = (comp‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccoid 17426 | . . 3 ⊢ comp = Slot (comp‘ndx) | |
| 2 | slotsbhcdif 17427 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 3 | simp3 1138 | . . . . 5 ⊢ (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 4 | 3 | necomd 2987 | . . . 4 ⊢ (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx)) |
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ (comp‘ndx) ≠ (Hom ‘ndx) |
| 6 | 1, 5 | setsnid 17225 | . 2 ⊢ (comp‘(𝐶 ↾s 𝑆)) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 7 | rescbas.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 8 | rescbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 9 | 8 | fvexi 6889 | . . . . 5 ⊢ 𝐵 ∈ V |
| 10 | 9 | ssex 5291 | . . . 4 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
| 11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
| 12 | eqid 2735 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
| 13 | rescco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 14 | 12, 13 | ressco 17431 | . . 3 ⊢ (𝑆 ∈ V → · = (comp‘(𝐶 ↾s 𝑆))) |
| 15 | 11, 14 | syl 17 | . 2 ⊢ (𝜑 → · = (comp‘(𝐶 ↾s 𝑆))) |
| 16 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
| 17 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 18 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 19 | 16, 17, 11, 18 | rescval2 17839 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 20 | 19 | fveq2d 6879 | . 2 ⊢ (𝜑 → (comp‘𝐷) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
| 21 | 6, 15, 20 | 3eqtr4a 2796 | 1 ⊢ (𝜑 → · = (comp‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ⊆ wss 3926 〈cop 4607 × cxp 5652 Fn wfn 6525 ‘cfv 6530 (class class class)co 7403 sSet csts 17180 ndxcnx 17210 Basecbs 17226 ↾s cress 17249 Hom chom 17280 compcco 17281 ↾cat cresc 17819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-hom 17293 df-cco 17294 df-resc 17822 |
| This theorem is referenced by: subccatid 17857 issubc3 17860 fullresc 17862 funcres 17907 funcres2b 17908 rngccofval 20584 ringccofval 20613 ssccatid 48987 resccatlem 48988 |
| Copyright terms: Public domain | W3C validator |