| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescco | Structured version Visualization version GIF version | ||
| Description: Composition in the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
| Ref | Expression |
|---|---|
| rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
| rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
| rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
| rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
| rescco.o | ⊢ · = (comp‘𝐶) |
| Ref | Expression |
|---|---|
| rescco | ⊢ (𝜑 → · = (comp‘𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccoid 17458 | . . 3 ⊢ comp = Slot (comp‘ndx) | |
| 2 | slotsbhcdif 17459 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 3 | simp3 1139 | . . . . 5 ⊢ (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (Hom ‘ndx) ≠ (comp‘ndx)) | |
| 4 | 3 | necomd 2996 | . . . 4 ⊢ (((Base‘ndx) ≠ (Hom ‘ndx) ∧ (Base‘ndx) ≠ (comp‘ndx) ∧ (Hom ‘ndx) ≠ (comp‘ndx)) → (comp‘ndx) ≠ (Hom ‘ndx)) |
| 5 | 2, 4 | ax-mp 5 | . . 3 ⊢ (comp‘ndx) ≠ (Hom ‘ndx) |
| 6 | 1, 5 | setsnid 17245 | . 2 ⊢ (comp‘(𝐶 ↾s 𝑆)) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 7 | rescbas.s | . . . 4 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
| 8 | rescbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐶) | |
| 9 | 8 | fvexi 6920 | . . . . 5 ⊢ 𝐵 ∈ V |
| 10 | 9 | ssex 5321 | . . . 4 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
| 11 | 7, 10 | syl 17 | . . 3 ⊢ (𝜑 → 𝑆 ∈ V) |
| 12 | eqid 2737 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
| 13 | rescco.o | . . . 4 ⊢ · = (comp‘𝐶) | |
| 14 | 12, 13 | ressco 17464 | . . 3 ⊢ (𝑆 ∈ V → · = (comp‘(𝐶 ↾s 𝑆))) |
| 15 | 11, 14 | syl 17 | . 2 ⊢ (𝜑 → · = (comp‘(𝐶 ↾s 𝑆))) |
| 16 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
| 17 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 18 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
| 19 | 16, 17, 11, 18 | rescval2 17872 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
| 20 | 19 | fveq2d 6910 | . 2 ⊢ (𝜑 → (comp‘𝐷) = (comp‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
| 21 | 6, 15, 20 | 3eqtr4a 2803 | 1 ⊢ (𝜑 → · = (comp‘𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1087 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ⊆ wss 3951 〈cop 4632 × cxp 5683 Fn wfn 6556 ‘cfv 6561 (class class class)co 7431 sSet csts 17200 ndxcnx 17230 Basecbs 17247 ↾s cress 17274 Hom chom 17308 compcco 17309 ↾cat cresc 17852 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-hom 17321 df-cco 17322 df-resc 17855 |
| This theorem is referenced by: subccatid 17891 issubc3 17894 fullresc 17896 funcres 17941 funcres2b 17942 rngccofval 20626 ringccofval 20655 |
| Copyright terms: Public domain | W3C validator |