![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescbasOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rescbas 17809 as of 18-Oct-2024. Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rescbas.d | β’ π· = (πΆ βΎcat π») |
rescbas.b | β’ π΅ = (BaseβπΆ) |
rescbas.c | β’ (π β πΆ β π) |
rescbas.h | β’ (π β π» Fn (π Γ π)) |
rescbas.s | β’ (π β π β π΅) |
Ref | Expression |
---|---|
rescbasOLD | β’ (π β π = (Baseβπ·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 17180 | . . 3 β’ Base = Slot (Baseβndx) | |
2 | 1re 11242 | . . . . 5 β’ 1 β β | |
3 | 1nn 12251 | . . . . . 6 β’ 1 β β | |
4 | 4nn0 12519 | . . . . . 6 β’ 4 β β0 | |
5 | 1nn0 12516 | . . . . . 6 β’ 1 β β0 | |
6 | 1lt10 12844 | . . . . . 6 β’ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12743 | . . . . 5 β’ 1 < ;14 |
8 | 2, 7 | ltneii 11355 | . . . 4 β’ 1 β ;14 |
9 | basendx 17186 | . . . . 5 β’ (Baseβndx) = 1 | |
10 | homndx 17389 | . . . . 5 β’ (Hom βndx) = ;14 | |
11 | 9, 10 | neeq12i 2997 | . . . 4 β’ ((Baseβndx) β (Hom βndx) β 1 β ;14) |
12 | 8, 11 | mpbir 230 | . . 3 β’ (Baseβndx) β (Hom βndx) |
13 | 1, 12 | setsnid 17175 | . 2 β’ (Baseβ(πΆ βΎs π)) = (Baseβ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
14 | rescbas.s | . . 3 β’ (π β π β π΅) | |
15 | eqid 2725 | . . . 4 β’ (πΆ βΎs π) = (πΆ βΎs π) | |
16 | rescbas.b | . . . 4 β’ π΅ = (BaseβπΆ) | |
17 | 15, 16 | ressbas2 17215 | . . 3 β’ (π β π΅ β π = (Baseβ(πΆ βΎs π))) |
18 | 14, 17 | syl 17 | . 2 β’ (π β π = (Baseβ(πΆ βΎs π))) |
19 | rescbas.d | . . . 4 β’ π· = (πΆ βΎcat π») | |
20 | rescbas.c | . . . 4 β’ (π β πΆ β π) | |
21 | 16 | fvexi 6905 | . . . . . 6 β’ π΅ β V |
22 | 21 | ssex 5316 | . . . . 5 β’ (π β π΅ β π β V) |
23 | 14, 22 | syl 17 | . . . 4 β’ (π β π β V) |
24 | rescbas.h | . . . 4 β’ (π β π» Fn (π Γ π)) | |
25 | 19, 20, 23, 24 | rescval2 17808 | . . 3 β’ (π β π· = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
26 | 25 | fveq2d 6895 | . 2 β’ (π β (Baseβπ·) = (Baseβ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©))) |
27 | 13, 18, 26 | 3eqtr4a 2791 | 1 β’ (π β π = (Baseβπ·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 β wne 2930 Vcvv 3463 β wss 3940 β¨cop 4630 Γ cxp 5670 Fn wfn 6537 βcfv 6542 (class class class)co 7415 1c1 11137 4c4 12297 ;cdc 12705 sSet csts 17129 ndxcnx 17159 Basecbs 17177 βΎs cress 17206 Hom chom 17241 βΎcat cresc 17788 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7868 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-er 8721 df-en 8961 df-dom 8962 df-sdom 8963 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-hom 17254 df-resc 17791 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |