![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescbasOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rescbas 17772 as of 18-Oct-2024. Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rescbas.d | β’ π· = (πΆ βΎcat π») |
rescbas.b | β’ π΅ = (BaseβπΆ) |
rescbas.c | β’ (π β πΆ β π) |
rescbas.h | β’ (π β π» Fn (π Γ π)) |
rescbas.s | β’ (π β π β π΅) |
Ref | Expression |
---|---|
rescbasOLD | β’ (π β π = (Baseβπ·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 17143 | . . 3 β’ Base = Slot (Baseβndx) | |
2 | 1re 11210 | . . . . 5 β’ 1 β β | |
3 | 1nn 12219 | . . . . . 6 β’ 1 β β | |
4 | 4nn0 12487 | . . . . . 6 β’ 4 β β0 | |
5 | 1nn0 12484 | . . . . . 6 β’ 1 β β0 | |
6 | 1lt10 12812 | . . . . . 6 β’ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12711 | . . . . 5 β’ 1 < ;14 |
8 | 2, 7 | ltneii 11323 | . . . 4 β’ 1 β ;14 |
9 | basendx 17149 | . . . . 5 β’ (Baseβndx) = 1 | |
10 | homndx 17352 | . . . . 5 β’ (Hom βndx) = ;14 | |
11 | 9, 10 | neeq12i 3007 | . . . 4 β’ ((Baseβndx) β (Hom βndx) β 1 β ;14) |
12 | 8, 11 | mpbir 230 | . . 3 β’ (Baseβndx) β (Hom βndx) |
13 | 1, 12 | setsnid 17138 | . 2 β’ (Baseβ(πΆ βΎs π)) = (Baseβ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
14 | rescbas.s | . . 3 β’ (π β π β π΅) | |
15 | eqid 2732 | . . . 4 β’ (πΆ βΎs π) = (πΆ βΎs π) | |
16 | rescbas.b | . . . 4 β’ π΅ = (BaseβπΆ) | |
17 | 15, 16 | ressbas2 17178 | . . 3 β’ (π β π΅ β π = (Baseβ(πΆ βΎs π))) |
18 | 14, 17 | syl 17 | . 2 β’ (π β π = (Baseβ(πΆ βΎs π))) |
19 | rescbas.d | . . . 4 β’ π· = (πΆ βΎcat π») | |
20 | rescbas.c | . . . 4 β’ (π β πΆ β π) | |
21 | 16 | fvexi 6902 | . . . . . 6 β’ π΅ β V |
22 | 21 | ssex 5320 | . . . . 5 β’ (π β π΅ β π β V) |
23 | 14, 22 | syl 17 | . . . 4 β’ (π β π β V) |
24 | rescbas.h | . . . 4 β’ (π β π» Fn (π Γ π)) | |
25 | 19, 20, 23, 24 | rescval2 17771 | . . 3 β’ (π β π· = ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©)) |
26 | 25 | fveq2d 6892 | . 2 β’ (π β (Baseβπ·) = (Baseβ((πΆ βΎs π) sSet β¨(Hom βndx), π»β©))) |
27 | 13, 18, 26 | 3eqtr4a 2798 | 1 β’ (π β π = (Baseβπ·)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 β wne 2940 Vcvv 3474 β wss 3947 β¨cop 4633 Γ cxp 5673 Fn wfn 6535 βcfv 6540 (class class class)co 7405 1c1 11107 4c4 12265 ;cdc 12673 sSet csts 17092 ndxcnx 17122 Basecbs 17140 βΎs cress 17169 Hom chom 17204 βΎcat cresc 17751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-3 12272 df-4 12273 df-5 12274 df-6 12275 df-7 12276 df-8 12277 df-9 12278 df-n0 12469 df-z 12555 df-dec 12674 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-hom 17217 df-resc 17754 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |