MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescbasOLD Structured version   Visualization version   GIF version

Theorem rescbasOLD 17434
Description: Obsolete version of rescbas 17433 as of 18-Oct-2024. Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
rescbas.d 𝐷 = (𝐶cat 𝐻)
rescbas.b 𝐵 = (Base‘𝐶)
rescbas.c (𝜑𝐶𝑉)
rescbas.h (𝜑𝐻 Fn (𝑆 × 𝑆))
rescbas.s (𝜑𝑆𝐵)
Assertion
Ref Expression
rescbasOLD (𝜑𝑆 = (Base‘𝐷))

Proof of Theorem rescbasOLD
StepHypRef Expression
1 baseid 16818 . . 3 Base = Slot (Base‘ndx)
2 1re 10881 . . . . 5 1 ∈ ℝ
3 1nn 11889 . . . . . 6 1 ∈ ℕ
4 4nn0 12157 . . . . . 6 4 ∈ ℕ0
5 1nn0 12154 . . . . . 6 1 ∈ ℕ0
6 1lt10 12480 . . . . . 6 1 < 10
73, 4, 5, 6declti 12379 . . . . 5 1 < 14
82, 7ltneii 10993 . . . 4 1 ≠ 14
9 basendx 16824 . . . . 5 (Base‘ndx) = 1
10 homndx 17015 . . . . 5 (Hom ‘ndx) = 14
119, 10neeq12i 3010 . . . 4 ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ 14)
128, 11mpbir 234 . . 3 (Base‘ndx) ≠ (Hom ‘ndx)
131, 12setsnid 16813 . 2 (Base‘(𝐶s 𝑆)) = (Base‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
14 rescbas.s . . 3 (𝜑𝑆𝐵)
15 eqid 2739 . . . 4 (𝐶s 𝑆) = (𝐶s 𝑆)
16 rescbas.b . . . 4 𝐵 = (Base‘𝐶)
1715, 16ressbas2 16850 . . 3 (𝑆𝐵𝑆 = (Base‘(𝐶s 𝑆)))
1814, 17syl 17 . 2 (𝜑𝑆 = (Base‘(𝐶s 𝑆)))
19 rescbas.d . . . 4 𝐷 = (𝐶cat 𝐻)
20 rescbas.c . . . 4 (𝜑𝐶𝑉)
2116fvexi 6767 . . . . . 6 𝐵 ∈ V
2221ssex 5238 . . . . 5 (𝑆𝐵𝑆 ∈ V)
2314, 22syl 17 . . . 4 (𝜑𝑆 ∈ V)
24 rescbas.h . . . 4 (𝜑𝐻 Fn (𝑆 × 𝑆))
2519, 20, 23, 24rescval2 17432 . . 3 (𝜑𝐷 = ((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩))
2625fveq2d 6757 . 2 (𝜑 → (Base‘𝐷) = (Base‘((𝐶s 𝑆) sSet ⟨(Hom ‘ndx), 𝐻⟩)))
2713, 18, 263eqtr4a 2806 1 (𝜑𝑆 = (Base‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1543  wcel 2112  wne 2943  Vcvv 3423  wss 3884  cop 4564   × cxp 5577   Fn wfn 6410  cfv 6415  (class class class)co 7252  1c1 10778  4c4 11935  cdc 12341   sSet csts 16767  ndxcnx 16797  Basecbs 16815  s cress 16842  Hom chom 16874  cat cresc 17412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-om 7685  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-er 8433  df-en 8669  df-dom 8670  df-sdom 8671  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-2 11941  df-3 11942  df-4 11943  df-5 11944  df-6 11945  df-7 11946  df-8 11947  df-9 11948  df-n0 12139  df-z 12225  df-dec 12342  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-ress 16843  df-hom 16887  df-resc 17415
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator