![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescbasOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rescbas 17815 as of 18-Oct-2024. Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Ref | Expression |
---|---|
rescbasOLD | ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 17186 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
2 | 1re 11246 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 1nn 12256 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | 4nn0 12524 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
5 | 1nn0 12521 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12849 | . . . . . 6 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12748 | . . . . 5 ⊢ 1 < ;14 |
8 | 2, 7 | ltneii 11359 | . . . 4 ⊢ 1 ≠ ;14 |
9 | basendx 17192 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
10 | homndx 17395 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
11 | 9, 10 | neeq12i 2996 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ ;14) |
12 | 8, 11 | mpbir 230 | . . 3 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
13 | 1, 12 | setsnid 17181 | . 2 ⊢ (Base‘(𝐶 ↾s 𝑆)) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
14 | rescbas.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
15 | eqid 2725 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
16 | rescbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
17 | 15, 16 | ressbas2 17221 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
18 | 14, 17 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
19 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
20 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
21 | 16 | fvexi 6910 | . . . . . 6 ⊢ 𝐵 ∈ V |
22 | 21 | ssex 5322 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
23 | 14, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
24 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
25 | 19, 20, 23, 24 | rescval2 17814 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
26 | 25 | fveq2d 6900 | . 2 ⊢ (𝜑 → (Base‘𝐷) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
27 | 13, 18, 26 | 3eqtr4a 2791 | 1 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 Vcvv 3461 ⊆ wss 3944 〈cop 4636 × cxp 5676 Fn wfn 6544 ‘cfv 6549 (class class class)co 7419 1c1 11141 4c4 12302 ;cdc 12710 sSet csts 17135 ndxcnx 17165 Basecbs 17183 ↾s cress 17212 Hom chom 17247 ↾cat cresc 17794 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-om 7872 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-er 8725 df-en 8965 df-dom 8966 df-sdom 8967 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-hom 17260 df-resc 17797 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |