Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rescbasOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rescbas 17433 as of 18-Oct-2024. Base set of the category restriction. (Contributed by Mario Carneiro, 4-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rescbas.d | ⊢ 𝐷 = (𝐶 ↾cat 𝐻) |
rescbas.b | ⊢ 𝐵 = (Base‘𝐶) |
rescbas.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescbas.h | ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) |
rescbas.s | ⊢ (𝜑 → 𝑆 ⊆ 𝐵) |
Ref | Expression |
---|---|
rescbasOLD | ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | baseid 16818 | . . 3 ⊢ Base = Slot (Base‘ndx) | |
2 | 1re 10881 | . . . . 5 ⊢ 1 ∈ ℝ | |
3 | 1nn 11889 | . . . . . 6 ⊢ 1 ∈ ℕ | |
4 | 4nn0 12157 | . . . . . 6 ⊢ 4 ∈ ℕ0 | |
5 | 1nn0 12154 | . . . . . 6 ⊢ 1 ∈ ℕ0 | |
6 | 1lt10 12480 | . . . . . 6 ⊢ 1 < ;10 | |
7 | 3, 4, 5, 6 | declti 12379 | . . . . 5 ⊢ 1 < ;14 |
8 | 2, 7 | ltneii 10993 | . . . 4 ⊢ 1 ≠ ;14 |
9 | basendx 16824 | . . . . 5 ⊢ (Base‘ndx) = 1 | |
10 | homndx 17015 | . . . . 5 ⊢ (Hom ‘ndx) = ;14 | |
11 | 9, 10 | neeq12i 3010 | . . . 4 ⊢ ((Base‘ndx) ≠ (Hom ‘ndx) ↔ 1 ≠ ;14) |
12 | 8, 11 | mpbir 234 | . . 3 ⊢ (Base‘ndx) ≠ (Hom ‘ndx) |
13 | 1, 12 | setsnid 16813 | . 2 ⊢ (Base‘(𝐶 ↾s 𝑆)) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
14 | rescbas.s | . . 3 ⊢ (𝜑 → 𝑆 ⊆ 𝐵) | |
15 | eqid 2739 | . . . 4 ⊢ (𝐶 ↾s 𝑆) = (𝐶 ↾s 𝑆) | |
16 | rescbas.b | . . . 4 ⊢ 𝐵 = (Base‘𝐶) | |
17 | 15, 16 | ressbas2 16850 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
18 | 14, 17 | syl 17 | . 2 ⊢ (𝜑 → 𝑆 = (Base‘(𝐶 ↾s 𝑆))) |
19 | rescbas.d | . . . 4 ⊢ 𝐷 = (𝐶 ↾cat 𝐻) | |
20 | rescbas.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
21 | 16 | fvexi 6767 | . . . . . 6 ⊢ 𝐵 ∈ V |
22 | 21 | ssex 5238 | . . . . 5 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ V) |
23 | 14, 22 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
24 | rescbas.h | . . . 4 ⊢ (𝜑 → 𝐻 Fn (𝑆 × 𝑆)) | |
25 | 19, 20, 23, 24 | rescval2 17432 | . . 3 ⊢ (𝜑 → 𝐷 = ((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉)) |
26 | 25 | fveq2d 6757 | . 2 ⊢ (𝜑 → (Base‘𝐷) = (Base‘((𝐶 ↾s 𝑆) sSet 〈(Hom ‘ndx), 𝐻〉))) |
27 | 13, 18, 26 | 3eqtr4a 2806 | 1 ⊢ (𝜑 → 𝑆 = (Base‘𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 Vcvv 3423 ⊆ wss 3884 〈cop 4564 × cxp 5577 Fn wfn 6410 ‘cfv 6415 (class class class)co 7252 1c1 10778 4c4 11935 ;cdc 12341 sSet csts 16767 ndxcnx 16797 Basecbs 16815 ↾s cress 16842 Hom chom 16874 ↾cat cresc 17412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-rep 5203 ax-sep 5216 ax-nul 5223 ax-pow 5282 ax-pr 5346 ax-un 7563 ax-cnex 10833 ax-resscn 10834 ax-1cn 10835 ax-icn 10836 ax-addcl 10837 ax-addrcl 10838 ax-mulcl 10839 ax-mulrcl 10840 ax-mulcom 10841 ax-addass 10842 ax-mulass 10843 ax-distr 10844 ax-i2m1 10845 ax-1ne0 10846 ax-1rid 10847 ax-rnegex 10848 ax-rrecex 10849 ax-cnre 10850 ax-pre-lttri 10851 ax-pre-lttrn 10852 ax-pre-ltadd 10853 ax-pre-mulgt0 10854 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3713 df-csb 3830 df-dif 3887 df-un 3889 df-in 3891 df-ss 3901 df-pss 3903 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5186 df-id 5479 df-eprel 5485 df-po 5493 df-so 5494 df-fr 5534 df-we 5536 df-xp 5585 df-rel 5586 df-cnv 5587 df-co 5588 df-dm 5589 df-rn 5590 df-res 5591 df-ima 5592 df-pred 6189 df-ord 6251 df-on 6252 df-lim 6253 df-suc 6254 df-iota 6373 df-fun 6417 df-fn 6418 df-f 6419 df-f1 6420 df-fo 6421 df-f1o 6422 df-fv 6423 df-riota 7209 df-ov 7255 df-oprab 7256 df-mpo 7257 df-om 7685 df-wrecs 8089 df-recs 8150 df-rdg 8188 df-er 8433 df-en 8669 df-dom 8670 df-sdom 8671 df-pnf 10917 df-mnf 10918 df-xr 10919 df-ltxr 10920 df-le 10921 df-sub 11112 df-neg 11113 df-nn 11879 df-2 11941 df-3 11942 df-4 11943 df-5 11944 df-6 11945 df-7 11946 df-8 11947 df-9 11948 df-n0 12139 df-z 12225 df-dec 12342 df-sets 16768 df-slot 16786 df-ndx 16798 df-base 16816 df-ress 16843 df-hom 16887 df-resc 17415 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |