![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rescabs2 | Structured version Visualization version GIF version |
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
rescabs2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescabs2.j | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
rescabs2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
rescabs2.t | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
Ref | Expression |
---|---|
rescabs2 | ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾cat 𝐽) = (𝐶 ↾cat 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescabs2.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
2 | rescabs2.t | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
3 | ressabs 16417 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑇 ⊆ 𝑆) → ((𝐶 ↾s 𝑆) ↾s 𝑇) = (𝐶 ↾s 𝑇)) | |
4 | 1, 2, 3 | syl2anc 576 | . . 3 ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾s 𝑇) = (𝐶 ↾s 𝑇)) |
5 | 4 | oveq1d 6989 | . 2 ⊢ (𝜑 → (((𝐶 ↾s 𝑆) ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉) = ((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
6 | eqid 2771 | . . 3 ⊢ ((𝐶 ↾s 𝑆) ↾cat 𝐽) = ((𝐶 ↾s 𝑆) ↾cat 𝐽) | |
7 | ovexd 7008 | . . 3 ⊢ (𝜑 → (𝐶 ↾s 𝑆) ∈ V) | |
8 | 1, 2 | ssexd 5080 | . . 3 ⊢ (𝜑 → 𝑇 ∈ V) |
9 | rescabs2.j | . . 3 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | |
10 | 6, 7, 8, 9 | rescval2 16968 | . 2 ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾cat 𝐽) = (((𝐶 ↾s 𝑆) ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
11 | eqid 2771 | . . 3 ⊢ (𝐶 ↾cat 𝐽) = (𝐶 ↾cat 𝐽) | |
12 | rescabs2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
13 | 11, 12, 8, 9 | rescval2 16968 | . 2 ⊢ (𝜑 → (𝐶 ↾cat 𝐽) = ((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
14 | 5, 10, 13 | 3eqtr4d 2817 | 1 ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾cat 𝐽) = (𝐶 ↾cat 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1508 ∈ wcel 2051 Vcvv 3408 ⊆ wss 3822 〈cop 4441 × cxp 5401 Fn wfn 6180 ‘cfv 6185 (class class class)co 6974 ndxcnx 16334 sSet csts 16335 ↾s cress 16338 Hom chom 16430 ↾cat cresc 16948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2743 ax-rep 5045 ax-sep 5056 ax-nul 5063 ax-pow 5115 ax-pr 5182 ax-un 7277 ax-cnex 10389 ax-1cn 10391 ax-addcl 10393 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2752 df-cleq 2764 df-clel 2839 df-nfc 2911 df-ne 2961 df-ral 3086 df-rex 3087 df-reu 3088 df-rab 3090 df-v 3410 df-sbc 3675 df-csb 3780 df-dif 3825 df-un 3827 df-in 3829 df-ss 3836 df-pss 3838 df-nul 4173 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4709 df-iun 4790 df-br 4926 df-opab 4988 df-mpt 5005 df-tr 5027 df-id 5308 df-eprel 5313 df-po 5322 df-so 5323 df-fr 5362 df-we 5364 df-xp 5409 df-rel 5410 df-cnv 5411 df-co 5412 df-dm 5413 df-rn 5414 df-res 5415 df-ima 5416 df-pred 5983 df-ord 6029 df-on 6030 df-lim 6031 df-suc 6032 df-iota 6149 df-fun 6187 df-fn 6188 df-f 6189 df-f1 6190 df-fo 6191 df-f1o 6192 df-fv 6193 df-ov 6977 df-oprab 6978 df-mpo 6979 df-om 7395 df-wrecs 7748 df-recs 7810 df-rdg 7848 df-nn 11438 df-ndx 16340 df-slot 16341 df-base 16343 df-sets 16344 df-ress 16345 df-resc 16951 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |