| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rescabs2 | Structured version Visualization version GIF version | ||
| Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| Ref | Expression |
|---|---|
| rescabs2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| rescabs2.j | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
| rescabs2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
| rescabs2.t | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
| Ref | Expression |
|---|---|
| rescabs2 | ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾cat 𝐽) = (𝐶 ↾cat 𝐽)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rescabs2.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
| 2 | rescabs2.t | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
| 3 | ressabs 17159 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑇 ⊆ 𝑆) → ((𝐶 ↾s 𝑆) ↾s 𝑇) = (𝐶 ↾s 𝑇)) | |
| 4 | 1, 2, 3 | syl2anc 584 | . . 3 ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾s 𝑇) = (𝐶 ↾s 𝑇)) |
| 5 | 4 | oveq1d 7361 | . 2 ⊢ (𝜑 → (((𝐶 ↾s 𝑆) ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉) = ((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
| 6 | eqid 2731 | . . 3 ⊢ ((𝐶 ↾s 𝑆) ↾cat 𝐽) = ((𝐶 ↾s 𝑆) ↾cat 𝐽) | |
| 7 | ovexd 7381 | . . 3 ⊢ (𝜑 → (𝐶 ↾s 𝑆) ∈ V) | |
| 8 | 1, 2 | ssexd 5260 | . . 3 ⊢ (𝜑 → 𝑇 ∈ V) |
| 9 | rescabs2.j | . . 3 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | |
| 10 | 6, 7, 8, 9 | rescval2 17735 | . 2 ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾cat 𝐽) = (((𝐶 ↾s 𝑆) ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
| 11 | eqid 2731 | . . 3 ⊢ (𝐶 ↾cat 𝐽) = (𝐶 ↾cat 𝐽) | |
| 12 | rescabs2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 13 | 11, 12, 8, 9 | rescval2 17735 | . 2 ⊢ (𝜑 → (𝐶 ↾cat 𝐽) = ((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
| 14 | 5, 10, 13 | 3eqtr4d 2776 | 1 ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾cat 𝐽) = (𝐶 ↾cat 𝐽)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 〈cop 4579 × cxp 5612 Fn wfn 6476 ‘cfv 6481 (class class class)co 7346 sSet csts 17074 ndxcnx 17104 ↾s cress 17141 Hom chom 17172 ↾cat cresc 17715 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-1cn 11064 ax-addcl 11066 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-nn 12126 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-resc 17718 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |