MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescabs2 Structured version   Visualization version   GIF version

Theorem rescabs2 16974
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
rescabs2.c (𝜑𝐶𝑉)
rescabs2.j (𝜑𝐽 Fn (𝑇 × 𝑇))
rescabs2.s (𝜑𝑆𝑊)
rescabs2.t (𝜑𝑇𝑆)
Assertion
Ref Expression
rescabs2 (𝜑 → ((𝐶s 𝑆) ↾cat 𝐽) = (𝐶cat 𝐽))

Proof of Theorem rescabs2
StepHypRef Expression
1 rescabs2.s . . . 4 (𝜑𝑆𝑊)
2 rescabs2.t . . . 4 (𝜑𝑇𝑆)
3 ressabs 16417 . . . 4 ((𝑆𝑊𝑇𝑆) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
41, 2, 3syl2anc 576 . . 3 (𝜑 → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
54oveq1d 6989 . 2 (𝜑 → (((𝐶s 𝑆) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
6 eqid 2771 . . 3 ((𝐶s 𝑆) ↾cat 𝐽) = ((𝐶s 𝑆) ↾cat 𝐽)
7 ovexd 7008 . . 3 (𝜑 → (𝐶s 𝑆) ∈ V)
81, 2ssexd 5080 . . 3 (𝜑𝑇 ∈ V)
9 rescabs2.j . . 3 (𝜑𝐽 Fn (𝑇 × 𝑇))
106, 7, 8, 9rescval2 16968 . 2 (𝜑 → ((𝐶s 𝑆) ↾cat 𝐽) = (((𝐶s 𝑆) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
11 eqid 2771 . . 3 (𝐶cat 𝐽) = (𝐶cat 𝐽)
12 rescabs2.c . . 3 (𝜑𝐶𝑉)
1311, 12, 8, 9rescval2 16968 . 2 (𝜑 → (𝐶cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
145, 10, 133eqtr4d 2817 1 (𝜑 → ((𝐶s 𝑆) ↾cat 𝐽) = (𝐶cat 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1508  wcel 2051  Vcvv 3408  wss 3822  cop 4441   × cxp 5401   Fn wfn 6180  cfv 6185  (class class class)co 6974  ndxcnx 16334   sSet csts 16335  s cress 16338  Hom chom 16430  cat cresc 16948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-rep 5045  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-1cn 10391  ax-addcl 10393
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-ral 3086  df-rex 3087  df-reu 3088  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-nn 11438  df-ndx 16340  df-slot 16341  df-base 16343  df-sets 16344  df-ress 16345  df-resc 16951
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator