MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rescabs2 Structured version   Visualization version   GIF version

Theorem rescabs2 17879
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.)
Hypotheses
Ref Expression
rescabs2.c (𝜑𝐶𝑉)
rescabs2.j (𝜑𝐽 Fn (𝑇 × 𝑇))
rescabs2.s (𝜑𝑆𝑊)
rescabs2.t (𝜑𝑇𝑆)
Assertion
Ref Expression
rescabs2 (𝜑 → ((𝐶s 𝑆) ↾cat 𝐽) = (𝐶cat 𝐽))

Proof of Theorem rescabs2
StepHypRef Expression
1 rescabs2.s . . . 4 (𝜑𝑆𝑊)
2 rescabs2.t . . . 4 (𝜑𝑇𝑆)
3 ressabs 17294 . . . 4 ((𝑆𝑊𝑇𝑆) → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
41, 2, 3syl2anc 584 . . 3 (𝜑 → ((𝐶s 𝑆) ↾s 𝑇) = (𝐶s 𝑇))
54oveq1d 7446 . 2 (𝜑 → (((𝐶s 𝑆) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
6 eqid 2737 . . 3 ((𝐶s 𝑆) ↾cat 𝐽) = ((𝐶s 𝑆) ↾cat 𝐽)
7 ovexd 7466 . . 3 (𝜑 → (𝐶s 𝑆) ∈ V)
81, 2ssexd 5324 . . 3 (𝜑𝑇 ∈ V)
9 rescabs2.j . . 3 (𝜑𝐽 Fn (𝑇 × 𝑇))
106, 7, 8, 9rescval2 17872 . 2 (𝜑 → ((𝐶s 𝑆) ↾cat 𝐽) = (((𝐶s 𝑆) ↾s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
11 eqid 2737 . . 3 (𝐶cat 𝐽) = (𝐶cat 𝐽)
12 rescabs2.c . . 3 (𝜑𝐶𝑉)
1311, 12, 8, 9rescval2 17872 . 2 (𝜑 → (𝐶cat 𝐽) = ((𝐶s 𝑇) sSet ⟨(Hom ‘ndx), 𝐽⟩))
145, 10, 133eqtr4d 2787 1 (𝜑 → ((𝐶s 𝑆) ↾cat 𝐽) = (𝐶cat 𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3480  wss 3951  cop 4632   × cxp 5683   Fn wfn 6556  cfv 6561  (class class class)co 7431   sSet csts 17200  ndxcnx 17230  s cress 17274  Hom chom 17308  cat cresc 17852
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-1cn 11213  ax-addcl 11215
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-nn 12267  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-resc 17855
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator