Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rescabs2 | Structured version Visualization version GIF version |
Description: Restriction absorption law. (Contributed by Mario Carneiro, 6-Jan-2017.) |
Ref | Expression |
---|---|
rescabs2.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
rescabs2.j | ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) |
rescabs2.s | ⊢ (𝜑 → 𝑆 ∈ 𝑊) |
rescabs2.t | ⊢ (𝜑 → 𝑇 ⊆ 𝑆) |
Ref | Expression |
---|---|
rescabs2 | ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾cat 𝐽) = (𝐶 ↾cat 𝐽)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rescabs2.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑊) | |
2 | rescabs2.t | . . . 4 ⊢ (𝜑 → 𝑇 ⊆ 𝑆) | |
3 | ressabs 16626 | . . . 4 ⊢ ((𝑆 ∈ 𝑊 ∧ 𝑇 ⊆ 𝑆) → ((𝐶 ↾s 𝑆) ↾s 𝑇) = (𝐶 ↾s 𝑇)) | |
4 | 1, 2, 3 | syl2anc 587 | . . 3 ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾s 𝑇) = (𝐶 ↾s 𝑇)) |
5 | 4 | oveq1d 7170 | . 2 ⊢ (𝜑 → (((𝐶 ↾s 𝑆) ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉) = ((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
6 | eqid 2758 | . . 3 ⊢ ((𝐶 ↾s 𝑆) ↾cat 𝐽) = ((𝐶 ↾s 𝑆) ↾cat 𝐽) | |
7 | ovexd 7190 | . . 3 ⊢ (𝜑 → (𝐶 ↾s 𝑆) ∈ V) | |
8 | 1, 2 | ssexd 5197 | . . 3 ⊢ (𝜑 → 𝑇 ∈ V) |
9 | rescabs2.j | . . 3 ⊢ (𝜑 → 𝐽 Fn (𝑇 × 𝑇)) | |
10 | 6, 7, 8, 9 | rescval2 17162 | . 2 ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾cat 𝐽) = (((𝐶 ↾s 𝑆) ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
11 | eqid 2758 | . . 3 ⊢ (𝐶 ↾cat 𝐽) = (𝐶 ↾cat 𝐽) | |
12 | rescabs2.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
13 | 11, 12, 8, 9 | rescval2 17162 | . 2 ⊢ (𝜑 → (𝐶 ↾cat 𝐽) = ((𝐶 ↾s 𝑇) sSet 〈(Hom ‘ndx), 𝐽〉)) |
14 | 5, 10, 13 | 3eqtr4d 2803 | 1 ⊢ (𝜑 → ((𝐶 ↾s 𝑆) ↾cat 𝐽) = (𝐶 ↾cat 𝐽)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 〈cop 4531 × cxp 5525 Fn wfn 6334 ‘cfv 6339 (class class class)co 7155 ndxcnx 16543 sSet csts 16544 ↾s cress 16547 Hom chom 16639 ↾cat cresc 17142 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-1cn 10638 ax-addcl 10640 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-nn 11680 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-resc 17145 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |