Step | Hyp | Ref
| Expression |
1 | | 2cn 12048 |
. . . . . 6
⊢ 2 ∈
ℂ |
2 | 1 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 2 ∈
ℂ) |
3 | | fzfid 13693 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(1...(⌊‘𝑥))
∈ Fin) |
4 | | elfznn 13285 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℕ) |
5 | 4 | adantl 482 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝑛 ∈
ℕ) |
6 | | mucl 26290 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ →
(μ‘𝑛) ∈
ℤ) |
7 | 5, 6 | syl 17 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℤ) |
8 | 7 | zred 12426 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (μ‘𝑛)
∈ ℝ) |
9 | 8, 5 | nndivred 12027 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛) /
𝑛) ∈
ℝ) |
10 | 9 | recnd 11003 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((μ‘𝑛) /
𝑛) ∈
ℂ) |
11 | | simpr 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝑥 ∈
ℝ+) |
12 | 4 | nnrpd 12770 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈
(1...(⌊‘𝑥))
→ 𝑛 ∈
ℝ+) |
13 | | rpdivcl 12755 |
. . . . . . . . . . . 12
⊢ ((𝑥 ∈ ℝ+
∧ 𝑛 ∈
ℝ+) → (𝑥 / 𝑛) ∈
ℝ+) |
14 | 11, 12, 13 | syl2an 596 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (𝑥 / 𝑛) ∈
ℝ+) |
15 | 14 | relogcld 25778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑛)) ∈
ℝ) |
16 | 15 | recnd 11003 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (log‘(𝑥 /
𝑛)) ∈
ℂ) |
17 | 16 | sqcld 13862 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((log‘(𝑥 /
𝑛))↑2) ∈
ℂ) |
18 | 17 | halfcld 12218 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((log‘(𝑥 /
𝑛))↑2) / 2) ∈
ℂ) |
19 | 10, 18 | mulcld 10995 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) ·
(((log‘(𝑥 / 𝑛))↑2) / 2)) ∈
ℂ) |
20 | 3, 19 | fsumcl 15445 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) ∈
ℂ) |
21 | | relogcl 25731 |
. . . . . . 7
⊢ (𝑥 ∈ ℝ+
→ (log‘𝑥) ∈
ℝ) |
22 | 21 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℝ) |
23 | 22 | recnd 11003 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(log‘𝑥) ∈
ℂ) |
24 | 2, 20, 23 | subdid 11431 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· (Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) = ((2 · Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) − (2 ·
(log‘𝑥)))) |
25 | 3, 2, 19 | fsummulc2 15496 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 ·
(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))) |
26 | 1 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 2 ∈ ℂ) |
27 | 26, 10, 18 | mul12d 11184 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = (((μ‘𝑛) / 𝑛) · (2 · (((log‘(𝑥 / 𝑛))↑2) / 2)))) |
28 | | 2ne0 12077 |
. . . . . . . . . . 11
⊢ 2 ≠
0 |
29 | 28 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 2 ≠ 0) |
30 | 17, 26, 29 | divcan2d 11753 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 · (((log‘(𝑥 / 𝑛))↑2) / 2)) = ((log‘(𝑥 / 𝑛))↑2)) |
31 | 30 | oveq2d 7291 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) · (2 ·
(((log‘(𝑥 / 𝑛))↑2) / 2))) =
(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2))) |
32 | 27, 31 | eqtrd 2778 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = (((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2))) |
33 | 32 | sumeq2dv 15415 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(2
· (((μ‘𝑛) /
𝑛) ·
(((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2))) |
34 | 25, 33 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2))) |
35 | 34 | oveq1d 7290 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((2
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) − (2 ·
(log‘𝑥))) =
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥)))) |
36 | 24, 35 | eqtrd 2778 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (2
· (Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥)))) |
37 | 36 | mpteq2dva 5174 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (2
· (Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥))))) |
38 | 20, 23 | subcld 11332 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)) ∈
ℂ) |
39 | | rpssre 12737 |
. . . . 5
⊢
ℝ+ ⊆ ℝ |
40 | | o1const 15329 |
. . . . 5
⊢
((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) →
(𝑥 ∈
ℝ+ ↦ 2) ∈ 𝑂(1)) |
41 | 39, 1, 40 | mp2an 689 |
. . . 4
⊢ (𝑥 ∈ ℝ+
↦ 2) ∈ 𝑂(1) |
42 | 41 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈
𝑂(1)) |
43 | | emre 26155 |
. . . . . . . . . . . . 13
⊢ γ
∈ ℝ |
44 | 43 | recni 10989 |
. . . . . . . . . . . 12
⊢ γ
∈ ℂ |
45 | | mulcl 10955 |
. . . . . . . . . . . 12
⊢ ((γ
∈ ℂ ∧ (log‘(𝑥 / 𝑛)) ∈ ℂ) → (γ ·
(log‘(𝑥 / 𝑛))) ∈
ℂ) |
46 | 44, 16, 45 | sylancr 587 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ) |
47 | | mulog2sumlem.1 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐹 ⇝𝑟 𝐿) |
48 | | rlimcl 15212 |
. . . . . . . . . . . . 13
⊢ (𝐹 ⇝𝑟
𝐿 → 𝐿 ∈ ℂ) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐿 ∈ ℂ) |
50 | 49 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ 𝐿 ∈
ℂ) |
51 | 46, 50 | subcld 11332 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((γ · (log‘(𝑥 / 𝑛))) − 𝐿) ∈ ℂ) |
52 | 18, 51 | addcld 10994 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((((log‘(𝑥 /
𝑛))↑2) / 2) +
((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ) |
53 | 10, 52 | mulcld 10995 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) ·
((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ
· (log‘(𝑥 /
𝑛))) − 𝐿))) ∈
ℂ) |
54 | 3, 53 | fsumcl 15445 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℂ) |
55 | 10, 51 | mulcld 10995 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) · ((γ
· (log‘(𝑥 /
𝑛))) − 𝐿)) ∈
ℂ) |
56 | 3, 55 | fsumcl 15445 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ) |
57 | 54, 23, 56 | sub32d 11364 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥))) |
58 | 3, 53, 55 | fsumsub 15500 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿)))) |
59 | 10, 52, 51 | subdid 11431 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) ·
(((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ
· (log‘(𝑥 /
𝑛))) − 𝐿)) − ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) = ((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿)))) |
60 | 18, 51 | pncand 11333 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((((log‘(𝑥 /
𝑛))↑2) / 2) +
((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) − ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿)) = (((log‘(𝑥 / 𝑛))↑2) / 2)) |
61 | 60 | oveq2d 7291 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) ·
(((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ
· (log‘(𝑥 /
𝑛))) − 𝐿)) − ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) |
62 | 59, 61 | eqtr3d 2780 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((((μ‘𝑛) /
𝑛) ·
((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ
· (log‘(𝑥 /
𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) |
63 | 62 | sumeq2dv 15415 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) |
64 | 58, 63 | eqtr3d 2780 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) |
65 | 64 | oveq1d 7290 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) |
66 | 57, 65 | eqtrd 2778 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) |
67 | 66 | mpteq2dva 5174 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿)))) = (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))) |
68 | 54, 23 | subcld 11332 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) ∈ ℂ) |
69 | | logdivsum.1 |
. . . . . 6
⊢ 𝐹 = (𝑦 ∈ ℝ+ ↦
(Σ𝑖 ∈
(1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2))) |
70 | | eqid 2738 |
. . . . . 6
⊢
((((log‘(𝑥 /
𝑛))↑2) / 2) +
((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) = ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿)) |
71 | | eqid 2738 |
. . . . . 6
⊢ (((1 / 2)
+ (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)) = (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)) |
72 | 69, 47, 70, 71 | mulog2sumlem2 26683 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥))) ∈ 𝑂(1)) |
73 | 44 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → γ
∈ ℂ) |
74 | 10, 16 | mulcld 10995 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) ·
(log‘(𝑥 / 𝑛))) ∈
ℂ) |
75 | 3, 73, 74 | fsummulc2 15496 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (γ
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(γ ·
(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) |
76 | 49 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → 𝐿 ∈
ℂ) |
77 | 3, 76, 10 | fsummulc1 15497 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿)) |
78 | 75, 77 | oveq12d 7293 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((γ
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(γ ·
(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿))) |
79 | | mulcl 10955 |
. . . . . . . . . 10
⊢ ((γ
∈ ℂ ∧ (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ) → (γ ·
(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ) |
80 | 44, 74, 79 | sylancr 587 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ) |
81 | 10, 50 | mulcld 10995 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) · 𝐿) ∈
ℂ) |
82 | 3, 80, 81 | fsumsub 15500 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(γ ·
(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿))) |
83 | 44 | a1i 11 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ γ ∈ ℂ) |
84 | 83, 10, 16 | mul12d 11184 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (((μ‘𝑛) / 𝑛) · (γ ·
(log‘(𝑥 / 𝑛))))) |
85 | 84 | oveq1d 7290 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = ((((μ‘𝑛) / 𝑛) · (γ ·
(log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿))) |
86 | 10, 46, 50 | subdid 11431 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ (((μ‘𝑛) /
𝑛) · ((γ
· (log‘(𝑥 /
𝑛))) − 𝐿)) = ((((μ‘𝑛) / 𝑛) · (γ ·
(log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿))) |
87 | 85, 86 | eqtr4d 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ 𝑛 ∈
(1...(⌊‘𝑥)))
→ ((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = (((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) |
88 | 87 | sumeq2dv 15415 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) |
89 | 78, 82, 88 | 3eqtr2d 2784 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((γ
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) |
90 | 89 | mpteq2dva 5174 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((γ
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿))) = (𝑥 ∈ ℝ+ ↦
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿)))) |
91 | 3, 74 | fsumcl 15445 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ) |
92 | | mulcl 10955 |
. . . . . . . 8
⊢ ((γ
∈ ℂ ∧ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ) → (γ ·
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ) |
93 | 44, 91, 92 | sylancr 587 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → (γ
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ) |
94 | 3, 10 | fsumcl 15445 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ) |
95 | 94, 76 | mulcld 10995 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿) ∈ ℂ) |
96 | 44 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → γ ∈
ℂ) |
97 | | o1const 15329 |
. . . . . . . . 9
⊢
((ℝ+ ⊆ ℝ ∧ γ ∈ ℂ)
→ (𝑥 ∈
ℝ+ ↦ γ) ∈ 𝑂(1)) |
98 | 39, 96, 97 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ γ)
∈ 𝑂(1)) |
99 | | mulogsum 26680 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1) |
100 | 99 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)) |
101 | 73, 91, 98, 100 | o1mul2 15334 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (γ
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1)) |
102 | | mudivsum 26678 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℝ+
↦ Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1) |
103 | 102 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)) |
104 | | o1const 15329 |
. . . . . . . . 9
⊢
((ℝ+ ⊆ ℝ ∧ 𝐿 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 𝐿) ∈
𝑂(1)) |
105 | 39, 49, 104 | sylancr 587 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ 𝐿) ∈
𝑂(1)) |
106 | 94, 76, 103, 105 | o1mul2 15334 |
. . . . . . 7
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) ∈ 𝑂(1)) |
107 | 93, 95, 101, 106 | o1sub2 15335 |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ ((γ
· Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿))) ∈ 𝑂(1)) |
108 | 90, 107 | eqeltrrd 2840 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) ∈ 𝑂(1)) |
109 | 68, 56, 72, 108 | o1sub2 15335 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
((Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ ·
(log‘(𝑥 / 𝑛))) − 𝐿)))) ∈ 𝑂(1)) |
110 | 67, 109 | eqeltrrd 2840 |
. . 3
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) ∈
𝑂(1)) |
111 | 2, 38, 42, 110 | o1mul2 15334 |
. 2
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦ (2
· (Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))) ∈
𝑂(1)) |
112 | 37, 111 | eqeltrrd 2840 |
1
⊢ (𝜑 → (𝑥 ∈ ℝ+ ↦
(Σ𝑛 ∈
(1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 ·
(log‘𝑥)))) ∈
𝑂(1)) |