Step | Hyp | Ref
| Expression |
1 | | 2cn 12283 |
. . . . . 6
β’ 2 β
β |
2 | 1 | a1i 11 |
. . . . 5
β’ ((π β§ π₯ β β+) β 2 β
β) |
3 | | fzfid 13934 |
. . . . . 6
β’ ((π β§ π₯ β β+) β
(1...(ββπ₯))
β Fin) |
4 | | elfznn 13526 |
. . . . . . . . . . . 12
β’ (π β
(1...(ββπ₯))
β π β
β) |
5 | 4 | adantl 482 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β π β
β) |
6 | | mucl 26634 |
. . . . . . . . . . 11
β’ (π β β β
(ΞΌβπ) β
β€) |
7 | 5, 6 | syl 17 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (ΞΌβπ)
β β€) |
8 | 7 | zred 12662 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (ΞΌβπ)
β β) |
9 | 8, 5 | nndivred 12262 |
. . . . . . . 8
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β ((ΞΌβπ) /
π) β
β) |
10 | 9 | recnd 11238 |
. . . . . . 7
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β ((ΞΌβπ) /
π) β
β) |
11 | | simpr 485 |
. . . . . . . . . . . 12
β’ ((π β§ π₯ β β+) β π₯ β
β+) |
12 | 4 | nnrpd 13010 |
. . . . . . . . . . . 12
β’ (π β
(1...(ββπ₯))
β π β
β+) |
13 | | rpdivcl 12995 |
. . . . . . . . . . . 12
β’ ((π₯ β β+
β§ π β
β+) β (π₯ / π) β
β+) |
14 | 11, 12, 13 | syl2an 596 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (π₯ / π) β
β+) |
15 | 14 | relogcld 26122 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (logβ(π₯ /
π)) β
β) |
16 | 15 | recnd 11238 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (logβ(π₯ /
π)) β
β) |
17 | 16 | sqcld 14105 |
. . . . . . . 8
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β ((logβ(π₯ /
π))β2) β
β) |
18 | 17 | halfcld 12453 |
. . . . . . 7
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (((logβ(π₯ /
π))β2) / 2) β
β) |
19 | 10, 18 | mulcld 11230 |
. . . . . 6
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β·
(((logβ(π₯ / π))β2) / 2)) β
β) |
20 | 3, 19 | fsumcl 15675 |
. . . . 5
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2)) β
β) |
21 | | relogcl 26075 |
. . . . . . 7
β’ (π₯ β β+
β (logβπ₯) β
β) |
22 | 21 | adantl 482 |
. . . . . 6
β’ ((π β§ π₯ β β+) β
(logβπ₯) β
β) |
23 | 22 | recnd 11238 |
. . . . 5
β’ ((π β§ π₯ β β+) β
(logβπ₯) β
β) |
24 | 2, 20, 23 | subdid 11666 |
. . . 4
β’ ((π β§ π₯ β β+) β (2
Β· (Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2)) β (logβπ₯))) = ((2 Β· Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2))) β (2 Β·
(logβπ₯)))) |
25 | 3, 2, 19 | fsummulc2 15726 |
. . . . . 6
β’ ((π β§ π₯ β β+) β (2
Β· Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2))) = Ξ£π β (1...(ββπ₯))(2 Β·
(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2)))) |
26 | 1 | a1i 11 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β 2 β β) |
27 | 26, 10, 18 | mul12d 11419 |
. . . . . . . 8
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (2 Β· (((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2))) = (((ΞΌβπ) / π) Β· (2 Β· (((logβ(π₯ / π))β2) / 2)))) |
28 | | 2ne0 12312 |
. . . . . . . . . . 11
β’ 2 β
0 |
29 | 28 | a1i 11 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β 2 β 0) |
30 | 17, 26, 29 | divcan2d 11988 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (2 Β· (((logβ(π₯ / π))β2) / 2)) = ((logβ(π₯ / π))β2)) |
31 | 30 | oveq2d 7421 |
. . . . . . . 8
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β· (2 Β·
(((logβ(π₯ / π))β2) / 2))) =
(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2))) |
32 | 27, 31 | eqtrd 2772 |
. . . . . . 7
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (2 Β· (((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2))) = (((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2))) |
33 | 32 | sumeq2dv 15645 |
. . . . . 6
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))(2
Β· (((ΞΌβπ) /
π) Β·
(((logβ(π₯ / π))β2) / 2))) = Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2))) |
34 | 25, 33 | eqtrd 2772 |
. . . . 5
β’ ((π β§ π₯ β β+) β (2
Β· Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2))) = Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2))) |
35 | 34 | oveq1d 7420 |
. . . 4
β’ ((π β§ π₯ β β+) β ((2
Β· Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2))) β (2 Β·
(logβπ₯))) =
(Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯)))) |
36 | 24, 35 | eqtrd 2772 |
. . 3
β’ ((π β§ π₯ β β+) β (2
Β· (Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2)) β (logβπ₯))) = (Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯)))) |
37 | 36 | mpteq2dva 5247 |
. 2
β’ (π β (π₯ β β+ β¦ (2
Β· (Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2)) β (logβπ₯)))) = (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯))))) |
38 | 20, 23 | subcld 11567 |
. . 3
β’ ((π β§ π₯ β β+) β
(Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2)) β (logβπ₯)) β
β) |
39 | | rpssre 12977 |
. . . . 5
β’
β+ β β |
40 | | o1const 15560 |
. . . . 5
β’
((β+ β β β§ 2 β β) β
(π₯ β
β+ β¦ 2) β π(1)) |
41 | 39, 1, 40 | mp2an 690 |
. . . 4
β’ (π₯ β β+
β¦ 2) β π(1) |
42 | 41 | a1i 11 |
. . 3
β’ (π β (π₯ β β+ β¦ 2) β
π(1)) |
43 | | emre 26499 |
. . . . . . . . . . . . 13
β’ Ξ³
β β |
44 | 43 | recni 11224 |
. . . . . . . . . . . 12
β’ Ξ³
β β |
45 | | mulcl 11190 |
. . . . . . . . . . . 12
β’ ((Ξ³
β β β§ (logβ(π₯ / π)) β β) β (Ξ³ Β·
(logβ(π₯ / π))) β
β) |
46 | 44, 16, 45 | sylancr 587 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (Ξ³ Β· (logβ(π₯ / π))) β β) |
47 | | mulog2sumlem.1 |
. . . . . . . . . . . . 13
β’ (π β πΉ βπ πΏ) |
48 | | rlimcl 15443 |
. . . . . . . . . . . . 13
β’ (πΉ βπ
πΏ β πΏ β β) |
49 | 47, 48 | syl 17 |
. . . . . . . . . . . 12
β’ (π β πΏ β β) |
50 | 49 | ad2antrr 724 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β πΏ β
β) |
51 | 46, 50 | subcld 11567 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β ((Ξ³ Β· (logβ(π₯ / π))) β πΏ) β β) |
52 | 18, 51 | addcld 11229 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β ((((logβ(π₯ /
π))β2) / 2) +
((Ξ³ Β· (logβ(π₯ / π))) β πΏ)) β β) |
53 | 10, 52 | mulcld 11230 |
. . . . . . . 8
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β·
((((logβ(π₯ / π))β2) / 2) + ((Ξ³
Β· (logβ(π₯ /
π))) β πΏ))) β
β) |
54 | 3, 53 | fsumcl 15675 |
. . . . . . 7
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β β) |
55 | 10, 51 | mulcld 11230 |
. . . . . . . 8
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β· ((Ξ³
Β· (logβ(π₯ /
π))) β πΏ)) β
β) |
56 | 3, 55 | fsumcl 15675 |
. . . . . . 7
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ)) β β) |
57 | 54, 23, 56 | sub32d 11599 |
. . . . . 6
β’ ((π β§ π₯ β β+) β
((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β (logβπ₯)) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) = ((Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β (logβπ₯))) |
58 | 3, 53, 55 | fsumsub 15730 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))((((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β (((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) = (Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ)))) |
59 | 10, 52, 51 | subdid 11666 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β·
(((((logβ(π₯ / π))β2) / 2) + ((Ξ³
Β· (logβ(π₯ /
π))) β πΏ)) β ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) = ((((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β (((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ)))) |
60 | 18, 51 | pncand 11568 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (((((logβ(π₯ /
π))β2) / 2) +
((Ξ³ Β· (logβ(π₯ / π))) β πΏ)) β ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ)) = (((logβ(π₯ / π))β2) / 2)) |
61 | 60 | oveq2d 7421 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β·
(((((logβ(π₯ / π))β2) / 2) + ((Ξ³
Β· (logβ(π₯ /
π))) β πΏ)) β ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) = (((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2))) |
62 | 59, 61 | eqtr3d 2774 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β ((((ΞΌβπ) /
π) Β·
((((logβ(π₯ / π))β2) / 2) + ((Ξ³
Β· (logβ(π₯ /
π))) β πΏ))) β (((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) = (((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2))) |
63 | 62 | sumeq2dv 15645 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))((((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β (((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) = Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2))) |
64 | 58, 63 | eqtr3d 2774 |
. . . . . . 7
β’ ((π β§ π₯ β β+) β
(Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) = Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2))) |
65 | 64 | oveq1d 7420 |
. . . . . 6
β’ ((π β§ π₯ β β+) β
((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β (logβπ₯)) = (Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2)) β (logβπ₯))) |
66 | 57, 65 | eqtrd 2772 |
. . . . 5
β’ ((π β§ π₯ β β+) β
((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β (logβπ₯)) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) = (Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2)) β (logβπ₯))) |
67 | 66 | mpteq2dva 5247 |
. . . 4
β’ (π β (π₯ β β+ β¦
((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β (logβπ₯)) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ)))) = (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2)) β (logβπ₯)))) |
68 | 54, 23 | subcld 11567 |
. . . . 5
β’ ((π β§ π₯ β β+) β
(Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β (logβπ₯)) β β) |
69 | | logdivsum.1 |
. . . . . 6
β’ πΉ = (π¦ β β+ β¦
(Ξ£π β
(1...(ββπ¦))((logβπ) / π) β (((logβπ¦)β2) / 2))) |
70 | | eqid 2732 |
. . . . . 6
β’
((((logβ(π₯ /
π))β2) / 2) +
((Ξ³ Β· (logβ(π₯ / π))) β πΏ)) = ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ)) |
71 | | eqid 2732 |
. . . . . 6
β’ (((1 / 2)
+ (Ξ³ + (absβπΏ))) + Ξ£π β (1...2)((logβ(e / π)) / π)) = (((1 / 2) + (Ξ³ + (absβπΏ))) + Ξ£π β (1...2)((logβ(e / π)) / π)) |
72 | 69, 47, 70, 71 | mulog2sumlem2 27027 |
. . . . 5
β’ (π β (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β (logβπ₯))) β π(1)) |
73 | 44 | a1i 11 |
. . . . . . . . . 10
β’ ((π β§ π₯ β β+) β Ξ³
β β) |
74 | 10, 16 | mulcld 11230 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β·
(logβ(π₯ / π))) β
β) |
75 | 3, 73, 74 | fsummulc2 15726 |
. . . . . . . . 9
β’ ((π β§ π₯ β β+) β (Ξ³
Β· Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) = Ξ£π β (1...(ββπ₯))(Ξ³ Β·
(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) |
76 | 49 | adantr 481 |
. . . . . . . . . 10
β’ ((π β§ π₯ β β+) β πΏ β
β) |
77 | 3, 76, 10 | fsummulc1 15727 |
. . . . . . . . 9
β’ ((π β§ π₯ β β+) β
(Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) Β· πΏ) = Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· πΏ)) |
78 | 75, 77 | oveq12d 7423 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β ((Ξ³
Β· Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β (Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π) Β· πΏ)) = (Ξ£π β (1...(ββπ₯))(Ξ³ Β·
(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· πΏ))) |
79 | | mulcl 11190 |
. . . . . . . . . 10
β’ ((Ξ³
β β β§ (((ΞΌβπ) / π) Β· (logβ(π₯ / π))) β β) β (Ξ³ Β·
(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β β) |
80 | 44, 74, 79 | sylancr 587 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (Ξ³ Β· (((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β β) |
81 | 10, 50 | mulcld 11230 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β· πΏ) β
β) |
82 | 3, 80, 81 | fsumsub 15730 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))((Ξ³ Β· (((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β (((ΞΌβπ) / π) Β· πΏ)) = (Ξ£π β (1...(ββπ₯))(Ξ³ Β·
(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· πΏ))) |
83 | 44 | a1i 11 |
. . . . . . . . . . . 12
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β Ξ³ β β) |
84 | 83, 10, 16 | mul12d 11419 |
. . . . . . . . . . 11
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (Ξ³ Β· (((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) = (((ΞΌβπ) / π) Β· (Ξ³ Β·
(logβ(π₯ / π))))) |
85 | 84 | oveq1d 7420 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β ((Ξ³ Β· (((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β (((ΞΌβπ) / π) Β· πΏ)) = ((((ΞΌβπ) / π) Β· (Ξ³ Β·
(logβ(π₯ / π)))) β (((ΞΌβπ) / π) Β· πΏ))) |
86 | 10, 46, 50 | subdid 11666 |
. . . . . . . . . 10
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β (((ΞΌβπ) /
π) Β· ((Ξ³
Β· (logβ(π₯ /
π))) β πΏ)) = ((((ΞΌβπ) / π) Β· (Ξ³ Β·
(logβ(π₯ / π)))) β (((ΞΌβπ) / π) Β· πΏ))) |
87 | 85, 86 | eqtr4d 2775 |
. . . . . . . . 9
β’ (((π β§ π₯ β β+) β§ π β
(1...(ββπ₯)))
β ((Ξ³ Β· (((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β (((ΞΌβπ) / π) Β· πΏ)) = (((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) |
88 | 87 | sumeq2dv 15645 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))((Ξ³ Β· (((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β (((ΞΌβπ) / π) Β· πΏ)) = Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) |
89 | 78, 82, 88 | 3eqtr2d 2778 |
. . . . . . 7
β’ ((π β§ π₯ β β+) β ((Ξ³
Β· Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β (Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π) Β· πΏ)) = Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) |
90 | 89 | mpteq2dva 5247 |
. . . . . 6
β’ (π β (π₯ β β+ β¦ ((Ξ³
Β· Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β (Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π) Β· πΏ))) = (π₯ β β+ β¦
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ)))) |
91 | 3, 74 | fsumcl 15675 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))) β β) |
92 | | mulcl 11190 |
. . . . . . . 8
β’ ((Ξ³
β β β§ Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))) β β) β (Ξ³ Β·
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β β) |
93 | 44, 91, 92 | sylancr 587 |
. . . . . . 7
β’ ((π β§ π₯ β β+) β (Ξ³
Β· Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β β) |
94 | 3, 10 | fsumcl 15675 |
. . . . . . . 8
β’ ((π β§ π₯ β β+) β
Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) β β) |
95 | 94, 76 | mulcld 11230 |
. . . . . . 7
β’ ((π β§ π₯ β β+) β
(Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) Β· πΏ) β β) |
96 | 44 | a1i 11 |
. . . . . . . . 9
β’ (π β Ξ³ β
β) |
97 | | o1const 15560 |
. . . . . . . . 9
β’
((β+ β β β§ Ξ³ β β)
β (π₯ β
β+ β¦ Ξ³) β π(1)) |
98 | 39, 96, 97 | sylancr 587 |
. . . . . . . 8
β’ (π β (π₯ β β+ β¦ Ξ³)
β π(1)) |
99 | | mulogsum 27024 |
. . . . . . . . 9
β’ (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β π(1) |
100 | 99 | a1i 11 |
. . . . . . . 8
β’ (π β (π₯ β β+ β¦
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β π(1)) |
101 | 73, 91, 98, 100 | o1mul2 15565 |
. . . . . . 7
β’ (π β (π₯ β β+ β¦ (Ξ³
Β· Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π))))) β π(1)) |
102 | | mudivsum 27022 |
. . . . . . . . 9
β’ (π₯ β β+
β¦ Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π)) β π(1) |
103 | 102 | a1i 11 |
. . . . . . . 8
β’ (π β (π₯ β β+ β¦
Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π)) β π(1)) |
104 | | o1const 15560 |
. . . . . . . . 9
β’
((β+ β β β§ πΏ β β) β (π₯ β β+ β¦ πΏ) β
π(1)) |
105 | 39, 49, 104 | sylancr 587 |
. . . . . . . 8
β’ (π β (π₯ β β+ β¦ πΏ) β
π(1)) |
106 | 94, 76, 103, 105 | o1mul2 15565 |
. . . . . . 7
β’ (π β (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))((ΞΌβπ) / π) Β· πΏ)) β π(1)) |
107 | 93, 95, 101, 106 | o1sub2 15566 |
. . . . . 6
β’ (π β (π₯ β β+ β¦ ((Ξ³
Β· Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (logβ(π₯ / π)))) β (Ξ£π β (1...(ββπ₯))((ΞΌβπ) / π) Β· πΏ))) β π(1)) |
108 | 90, 107 | eqeltrrd 2834 |
. . . . 5
β’ (π β (π₯ β β+ β¦
Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β π(1)) |
109 | 68, 56, 72, 108 | o1sub2 15566 |
. . . 4
β’ (π β (π₯ β β+ β¦
((Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((((logβ(π₯ / π))β2) / 2) + ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ))) β (logβπ₯)) β Ξ£π β (1...(ββπ₯))(((ΞΌβπ) / π) Β· ((Ξ³ Β·
(logβ(π₯ / π))) β πΏ)))) β π(1)) |
110 | 67, 109 | eqeltrrd 2834 |
. . 3
β’ (π β (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2)) β (logβπ₯))) β
π(1)) |
111 | 2, 38, 42, 110 | o1mul2 15565 |
. 2
β’ (π β (π₯ β β+ β¦ (2
Β· (Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· (((logβ(π₯ / π))β2) / 2)) β (logβπ₯)))) β
π(1)) |
112 | 37, 111 | eqeltrrd 2834 |
1
β’ (π β (π₯ β β+ β¦
(Ξ£π β
(1...(ββπ₯))(((ΞΌβπ) / π) Β· ((logβ(π₯ / π))β2)) β (2 Β·
(logβπ₯)))) β
π(1)) |