MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulog2sumlem3 Structured version   Visualization version   GIF version

Theorem mulog2sumlem3 27595
Description: Lemma for mulog2sum 27596. (Contributed by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
mulog2sumlem.1 (𝜑𝐹𝑟 𝐿)
Assertion
Ref Expression
mulog2sumlem3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
Distinct variable groups:   𝑖,𝑛,𝑥,𝑦   𝑥,𝐹   𝑛,𝐿,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑖)   𝐹(𝑦,𝑖,𝑛)   𝐿(𝑦,𝑖)

Proof of Theorem mulog2sumlem3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 2cn 12339 . . . . . 6 2 ∈ ℂ
21a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
3 fzfid 14011 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
4 elfznn 13590 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
54adantl 481 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
6 mucl 27199 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
75, 6syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
87zred 12720 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
98, 5nndivred 12318 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
109recnd 11287 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
11 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
124nnrpd 13073 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
13 rpdivcl 13058 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
1411, 12, 13syl2an 596 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
1514relogcld 26680 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
1615recnd 11287 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
1716sqcld 14181 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
1817halfcld 12509 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) / 2) ∈ ℂ)
1910, 18mulcld 11279 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) ∈ ℂ)
203, 19fsumcl 15766 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) ∈ ℂ)
21 relogcl 26632 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2221adantl 481 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
2322recnd 11287 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
242, 20, 23subdid 11717 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) − (2 · (log‘𝑥))))
253, 2, 19fsummulc2 15817 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))))
261a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
2726, 10, 18mul12d 11468 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = (((μ‘𝑛) / 𝑛) · (2 · (((log‘(𝑥 / 𝑛))↑2) / 2))))
28 2ne0 12368 . . . . . . . . . . 11 2 ≠ 0
2928a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ≠ 0)
3017, 26, 29divcan2d 12043 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((log‘(𝑥 / 𝑛))↑2) / 2)) = ((log‘(𝑥 / 𝑛))↑2))
3130oveq2d 7447 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (2 · (((log‘(𝑥 / 𝑛))↑2) / 2))) = (((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3227, 31eqtrd 2775 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = (((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3332sumeq2dv 15735 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3425, 33eqtrd 2775 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3534oveq1d 7446 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) − (2 · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))))
3624, 35eqtrd 2775 . . 3 ((𝜑𝑥 ∈ ℝ+) → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))))
3736mpteq2dva 5248 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))))
3820, 23subcld 11618 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)) ∈ ℂ)
39 rpssre 13040 . . . . 5 + ⊆ ℝ
40 o1const 15653 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
4139, 1, 40mp2an 692 . . . 4 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
4241a1i 11 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
43 emre 27064 . . . . . . . . . . . . 13 γ ∈ ℝ
4443recni 11273 . . . . . . . . . . . 12 γ ∈ ℂ
45 mulcl 11237 . . . . . . . . . . . 12 ((γ ∈ ℂ ∧ (log‘(𝑥 / 𝑛)) ∈ ℂ) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ)
4644, 16, 45sylancr 587 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ)
47 mulog2sumlem.1 . . . . . . . . . . . . 13 (𝜑𝐹𝑟 𝐿)
48 rlimcl 15536 . . . . . . . . . . . . 13 (𝐹𝑟 𝐿𝐿 ∈ ℂ)
4947, 48syl 17 . . . . . . . . . . . 12 (𝜑𝐿 ∈ ℂ)
5049ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐿 ∈ ℂ)
5146, 50subcld 11618 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (log‘(𝑥 / 𝑛))) − 𝐿) ∈ ℂ)
5218, 51addcld 11278 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ)
5310, 52mulcld 11279 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℂ)
543, 53fsumcl 15766 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℂ)
5510, 51mulcld 11279 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ)
563, 55fsumcl 15766 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ)
5754, 23, 56sub32d 11650 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)))
583, 53, 55fsumsub 15821 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
5910, 52, 51subdid 11717 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) − ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = ((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
6018, 51pncand 11619 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) − ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) = (((log‘(𝑥 / 𝑛))↑2) / 2))
6160oveq2d 7447 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) − ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6259, 61eqtr3d 2777 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6362sumeq2dv 15735 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6458, 63eqtr3d 2777 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6564oveq1d 7446 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))
6657, 65eqtrd 2775 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))
6766mpteq2dva 5248 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))))
6854, 23subcld 11618 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) ∈ ℂ)
69 logdivsum.1 . . . . . 6 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
70 eqid 2735 . . . . . 6 ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) = ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))
71 eqid 2735 . . . . . 6 (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)) = (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
7269, 47, 70, 71mulog2sumlem2 27594 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥))) ∈ 𝑂(1))
7344a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → γ ∈ ℂ)
7410, 16mulcld 11279 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
753, 73, 74fsummulc2 15817 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
7649adantr 480 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐿 ∈ ℂ)
773, 76, 10fsummulc1 15818 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿))
7875, 77oveq12d 7449 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿)))
79 mulcl 11237 . . . . . . . . . 10 ((γ ∈ ℂ ∧ (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ) → (γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
8044, 74, 79sylancr 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
8110, 50mulcld 11279 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · 𝐿) ∈ ℂ)
823, 80, 81fsumsub 15821 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿)))
8344a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → γ ∈ ℂ)
8483, 10, 16mul12d 11468 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (((μ‘𝑛) / 𝑛) · (γ · (log‘(𝑥 / 𝑛)))))
8584oveq1d 7446 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = ((((μ‘𝑛) / 𝑛) · (γ · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)))
8610, 46, 50subdid 11717 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) = ((((μ‘𝑛) / 𝑛) · (γ · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)))
8785, 86eqtr4d 2778 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
8887sumeq2dv 15735 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
8978, 82, 883eqtr2d 2781 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
9089mpteq2dva 5248 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
913, 74fsumcl 15766 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
92 mulcl 11237 . . . . . . . 8 ((γ ∈ ℂ ∧ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ) → (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
9344, 91, 92sylancr 587 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
943, 10fsumcl 15766 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
9594, 76mulcld 11279 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿) ∈ ℂ)
9644a1i 11 . . . . . . . . 9 (𝜑 → γ ∈ ℂ)
97 o1const 15653 . . . . . . . . 9 ((ℝ+ ⊆ ℝ ∧ γ ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1))
9839, 96, 97sylancr 587 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1))
99 mulogsum 27591 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)
10099a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1))
10173, 91, 98, 100o1mul2 15658 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1))
102 mudivsum 27589 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
103102a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1))
104 o1const 15653 . . . . . . . . 9 ((ℝ+ ⊆ ℝ ∧ 𝐿 ∈ ℂ) → (𝑥 ∈ ℝ+𝐿) ∈ 𝑂(1))
10539, 49, 104sylancr 587 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+𝐿) ∈ 𝑂(1))
10694, 76, 103, 105o1mul2 15658 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) ∈ 𝑂(1))
10793, 95, 101, 106o1sub2 15659 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿))) ∈ 𝑂(1))
10890, 107eqeltrrd 2840 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ 𝑂(1))
10968, 56, 72, 108o1sub2 15659 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))) ∈ 𝑂(1))
11067, 109eqeltrrd 2840 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) ∈ 𝑂(1))
1112, 38, 42, 110o1mul2 15658 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))) ∈ 𝑂(1))
11237, 111eqeltrrd 2840 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wne 2938  wss 3963   class class class wbr 5148  cmpt 5231  cfv 6563  (class class class)co 7431  cc 11151  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  cz 12611  +crp 13032  ...cfz 13544  cfl 13827  cexp 14099  abscabs 15270  𝑟 crli 15518  𝑂(1)co1 15519  Σcsu 15719  eceu 16095  logclog 26611  γcem 27050  μcmu 27153
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231  ax-addf 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-disj 5116  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-map 8867  df-pm 8868  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-xnn0 12598  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-fac 14310  df-bc 14339  df-hash 14367  df-shft 15103  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-limsup 15504  df-clim 15521  df-rlim 15522  df-o1 15523  df-lo1 15524  df-sum 15720  df-ef 16100  df-e 16101  df-sin 16102  df-cos 16103  df-tan 16104  df-pi 16105  df-dvds 16288  df-gcd 16529  df-prm 16706  df-pc 16871  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-starv 17313  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-unif 17321  df-hom 17322  df-cco 17323  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-pt 17491  df-prds 17494  df-xrs 17549  df-qtop 17554  df-imas 17555  df-xps 17557  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-mulg 19099  df-cntz 19348  df-cmn 19815  df-psmet 21374  df-xmet 21375  df-met 21376  df-bl 21377  df-mopn 21378  df-fbas 21379  df-fg 21380  df-cnfld 21383  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-cld 23043  df-ntr 23044  df-cls 23045  df-nei 23122  df-lp 23160  df-perf 23161  df-cn 23251  df-cnp 23252  df-haus 23339  df-cmp 23411  df-tx 23586  df-hmeo 23779  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-xms 24346  df-ms 24347  df-tms 24348  df-cncf 24918  df-limc 25916  df-dv 25917  df-ulm 26435  df-log 26613  df-cxp 26614  df-atan 26925  df-em 27051  df-mu 27159
This theorem is referenced by:  mulog2sum  27596
  Copyright terms: Public domain W3C validator