MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulog2sumlem3 Structured version   Visualization version   GIF version

Theorem mulog2sumlem3 26684
Description: Lemma for mulog2sum 26685. (Contributed by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
logdivsum.1 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
mulog2sumlem.1 (𝜑𝐹𝑟 𝐿)
Assertion
Ref Expression
mulog2sumlem3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
Distinct variable groups:   𝑖,𝑛,𝑥,𝑦   𝑥,𝐹   𝑛,𝐿,𝑥   𝜑,𝑛,𝑥
Allowed substitution hints:   𝜑(𝑦,𝑖)   𝐹(𝑦,𝑖,𝑛)   𝐿(𝑦,𝑖)

Proof of Theorem mulog2sumlem3
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 2cn 12048 . . . . . 6 2 ∈ ℂ
21a1i 11 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → 2 ∈ ℂ)
3 fzfid 13693 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (1...(⌊‘𝑥)) ∈ Fin)
4 elfznn 13285 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℕ)
54adantl 482 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝑛 ∈ ℕ)
6 mucl 26290 . . . . . . . . . . 11 (𝑛 ∈ ℕ → (μ‘𝑛) ∈ ℤ)
75, 6syl 17 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℤ)
87zred 12426 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (μ‘𝑛) ∈ ℝ)
98, 5nndivred 12027 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℝ)
109recnd 11003 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((μ‘𝑛) / 𝑛) ∈ ℂ)
11 simpr 485 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ+) → 𝑥 ∈ ℝ+)
124nnrpd 12770 . . . . . . . . . . . 12 (𝑛 ∈ (1...(⌊‘𝑥)) → 𝑛 ∈ ℝ+)
13 rpdivcl 12755 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ+𝑛 ∈ ℝ+) → (𝑥 / 𝑛) ∈ ℝ+)
1411, 12, 13syl2an 596 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (𝑥 / 𝑛) ∈ ℝ+)
1514relogcld 25778 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℝ)
1615recnd 11003 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (log‘(𝑥 / 𝑛)) ∈ ℂ)
1716sqcld 13862 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((log‘(𝑥 / 𝑛))↑2) ∈ ℂ)
1817halfcld 12218 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((log‘(𝑥 / 𝑛))↑2) / 2) ∈ ℂ)
1910, 18mulcld 10995 . . . . . 6 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) ∈ ℂ)
203, 19fsumcl 15445 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) ∈ ℂ)
21 relogcl 25731 . . . . . . 7 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
2221adantl 482 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℝ)
2322recnd 11003 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (log‘𝑥) ∈ ℂ)
242, 20, 23subdid 11431 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) = ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) − (2 · (log‘𝑥))))
253, 2, 19fsummulc2 15496 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))))
261a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ∈ ℂ)
2726, 10, 18mul12d 11184 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = (((μ‘𝑛) / 𝑛) · (2 · (((log‘(𝑥 / 𝑛))↑2) / 2))))
28 2ne0 12077 . . . . . . . . . . 11 2 ≠ 0
2928a1i 11 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 2 ≠ 0)
3017, 26, 29divcan2d 11753 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((log‘(𝑥 / 𝑛))↑2) / 2)) = ((log‘(𝑥 / 𝑛))↑2))
3130oveq2d 7291 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (2 · (((log‘(𝑥 / 𝑛))↑2) / 2))) = (((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3227, 31eqtrd 2778 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = (((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3332sumeq2dv 15415 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(2 · (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3425, 33eqtrd 2778 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)))
3534oveq1d 7290 . . . 4 ((𝜑𝑥 ∈ ℝ+) → ((2 · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2))) − (2 · (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))))
3624, 35eqtrd 2778 . . 3 ((𝜑𝑥 ∈ ℝ+) → (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥))))
3736mpteq2dva 5174 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))))
3820, 23subcld 11332 . . 3 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)) ∈ ℂ)
39 rpssre 12737 . . . . 5 + ⊆ ℝ
40 o1const 15329 . . . . 5 ((ℝ+ ⊆ ℝ ∧ 2 ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
4139, 1, 40mp2an 689 . . . 4 (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1)
4241a1i 11 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ 2) ∈ 𝑂(1))
43 emre 26155 . . . . . . . . . . . . 13 γ ∈ ℝ
4443recni 10989 . . . . . . . . . . . 12 γ ∈ ℂ
45 mulcl 10955 . . . . . . . . . . . 12 ((γ ∈ ℂ ∧ (log‘(𝑥 / 𝑛)) ∈ ℂ) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ)
4644, 16, 45sylancr 587 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (log‘(𝑥 / 𝑛))) ∈ ℂ)
47 mulog2sumlem.1 . . . . . . . . . . . . 13 (𝜑𝐹𝑟 𝐿)
48 rlimcl 15212 . . . . . . . . . . . . 13 (𝐹𝑟 𝐿𝐿 ∈ ℂ)
4947, 48syl 17 . . . . . . . . . . . 12 (𝜑𝐿 ∈ ℂ)
5049ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → 𝐿 ∈ ℂ)
5146, 50subcld 11332 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (log‘(𝑥 / 𝑛))) − 𝐿) ∈ ℂ)
5218, 51addcld 10994 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ)
5310, 52mulcld 10995 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℂ)
543, 53fsumcl 15445 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ ℂ)
5510, 51mulcld 10995 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ)
563, 55fsumcl 15445 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) ∈ ℂ)
5754, 23, 56sub32d 11364 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)))
583, 53, 55fsumsub 15500 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
5910, 52, 51subdid 11431 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) − ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = ((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
6018, 51pncand 11333 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) − ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) = (((log‘(𝑥 / 𝑛))↑2) / 2))
6160oveq2d 7291 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) − ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6259, 61eqtr3d 2780 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6362sumeq2dv 15415 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6458, 63eqtr3d 2780 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)))
6564oveq1d 7290 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))
6657, 65eqtrd 2778 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))
6766mpteq2dva 5174 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))) = (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))))
6854, 23subcld 11332 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) ∈ ℂ)
69 logdivsum.1 . . . . . 6 𝐹 = (𝑦 ∈ ℝ+ ↦ (Σ𝑖 ∈ (1...(⌊‘𝑦))((log‘𝑖) / 𝑖) − (((log‘𝑦)↑2) / 2)))
70 eqid 2738 . . . . . 6 ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) = ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))
71 eqid 2738 . . . . . 6 (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚)) = (((1 / 2) + (γ + (abs‘𝐿))) + Σ𝑚 ∈ (1...2)((log‘(e / 𝑚)) / 𝑚))
7269, 47, 70, 71mulog2sumlem2 26683 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥))) ∈ 𝑂(1))
7344a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → γ ∈ ℂ)
7410, 16mulcld 10995 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
753, 73, 74fsummulc2 15496 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = Σ𝑛 ∈ (1...(⌊‘𝑥))(γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))))
7649adantr 481 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ+) → 𝐿 ∈ ℂ)
773, 76, 10fsummulc1 15497 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿))
7875, 77oveq12d 7293 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿)))
79 mulcl 10955 . . . . . . . . . 10 ((γ ∈ ℂ ∧ (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ) → (γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
8044, 74, 79sylancr 587 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
8110, 50mulcld 10995 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · 𝐿) ∈ ℂ)
823, 80, 81fsumsub 15500 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = (Σ𝑛 ∈ (1...(⌊‘𝑥))(γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · 𝐿)))
8344a1i 11 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → γ ∈ ℂ)
8483, 10, 16mul12d 11184 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) = (((μ‘𝑛) / 𝑛) · (γ · (log‘(𝑥 / 𝑛)))))
8584oveq1d 7290 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = ((((μ‘𝑛) / 𝑛) · (γ · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)))
8610, 46, 50subdid 11431 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)) = ((((μ‘𝑛) / 𝑛) · (γ · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)))
8785, 86eqtr4d 2781 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ 𝑛 ∈ (1...(⌊‘𝑥))) → ((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = (((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
8887sumeq2dv 15415 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((γ · (((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (((μ‘𝑛) / 𝑛) · 𝐿)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
8978, 82, 883eqtr2d 2784 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) = Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))
9089mpteq2dva 5174 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿))) = (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))))
913, 74fsumcl 15445 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ)
92 mulcl 10955 . . . . . . . 8 ((γ ∈ ℂ ∧ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))) ∈ ℂ) → (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
9344, 91, 92sylancr 587 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ ℂ)
943, 10fsumcl 15445 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ+) → Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) ∈ ℂ)
9594, 76mulcld 10995 . . . . . . 7 ((𝜑𝑥 ∈ ℝ+) → (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿) ∈ ℂ)
9644a1i 11 . . . . . . . . 9 (𝜑 → γ ∈ ℂ)
97 o1const 15329 . . . . . . . . 9 ((ℝ+ ⊆ ℝ ∧ γ ∈ ℂ) → (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1))
9839, 96, 97sylancr 587 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ γ) ∈ 𝑂(1))
99 mulogsum 26680 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1)
10099a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) ∈ 𝑂(1))
10173, 91, 98, 100o1mul2 15334 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛))))) ∈ 𝑂(1))
102 mudivsum 26678 . . . . . . . . 9 (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1)
103102a1i 11 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛)) ∈ 𝑂(1))
104 o1const 15329 . . . . . . . . 9 ((ℝ+ ⊆ ℝ ∧ 𝐿 ∈ ℂ) → (𝑥 ∈ ℝ+𝐿) ∈ 𝑂(1))
10539, 49, 104sylancr 587 . . . . . . . 8 (𝜑 → (𝑥 ∈ ℝ+𝐿) ∈ 𝑂(1))
10694, 76, 103, 105o1mul2 15334 . . . . . . 7 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿)) ∈ 𝑂(1))
10793, 95, 101, 106o1sub2 15335 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((γ · Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (log‘(𝑥 / 𝑛)))) − (Σ𝑛 ∈ (1...(⌊‘𝑥))((μ‘𝑛) / 𝑛) · 𝐿))) ∈ 𝑂(1))
10890, 107eqeltrrd 2840 . . . . 5 (𝜑 → (𝑥 ∈ ℝ+ ↦ Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) ∈ 𝑂(1))
10968, 56, 72, 108o1sub2 15335 . . . 4 (𝜑 → (𝑥 ∈ ℝ+ ↦ ((Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((((log‘(𝑥 / 𝑛))↑2) / 2) + ((γ · (log‘(𝑥 / 𝑛))) − 𝐿))) − (log‘𝑥)) − Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((γ · (log‘(𝑥 / 𝑛))) − 𝐿)))) ∈ 𝑂(1))
11067, 109eqeltrrd 2840 . . 3 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥))) ∈ 𝑂(1))
1112, 38, 42, 110o1mul2 15334 . 2 (𝜑 → (𝑥 ∈ ℝ+ ↦ (2 · (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · (((log‘(𝑥 / 𝑛))↑2) / 2)) − (log‘𝑥)))) ∈ 𝑂(1))
11237, 111eqeltrrd 2840 1 (𝜑 → (𝑥 ∈ ℝ+ ↦ (Σ𝑛 ∈ (1...(⌊‘𝑥))(((μ‘𝑛) / 𝑛) · ((log‘(𝑥 / 𝑛))↑2)) − (2 · (log‘𝑥)))) ∈ 𝑂(1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  wne 2943  wss 3887   class class class wbr 5074  cmpt 5157  cfv 6433  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   · cmul 10876  cmin 11205   / cdiv 11632  cn 11973  2c2 12028  cz 12319  +crp 12730  ...cfz 13239  cfl 13510  cexp 13782  abscabs 14945  𝑟 crli 15194  𝑂(1)co1 15195  Σcsu 15397  eceu 15772  logclog 25710  γcem 26141  μcmu 26244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-disj 5040  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-xnn0 12306  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-ioo 13083  df-ioc 13084  df-ico 13085  df-icc 13086  df-fz 13240  df-fzo 13383  df-fl 13512  df-mod 13590  df-seq 13722  df-exp 13783  df-fac 13988  df-bc 14017  df-hash 14045  df-shft 14778  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-limsup 15180  df-clim 15197  df-rlim 15198  df-o1 15199  df-lo1 15200  df-sum 15398  df-ef 15777  df-e 15778  df-sin 15779  df-cos 15780  df-tan 15781  df-pi 15782  df-dvds 15964  df-gcd 16202  df-prm 16377  df-pc 16538  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-cmp 22538  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031  df-ulm 25536  df-log 25712  df-cxp 25713  df-atan 26017  df-em 26142  df-mu 26250
This theorem is referenced by:  mulog2sum  26685
  Copyright terms: Public domain W3C validator