MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiub Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiub 13711
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0 and ending with the supremum of the union of the support of these functions. (Contributed by AV, 2-Oct-2019.) (Proof shortened by JJ, 2-Aug-2021.)
Hypotheses
Ref Expression
fsuppmapnn0fiub.u 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
fsuppmapnn0fiub.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
fsuppmapnn0fiub ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆)))
Distinct variable groups:   𝑓,𝑀   𝑅,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑍
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem fsuppmapnn0fiub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1917 . . . 4 𝑓(𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
2 nfra1 3144 . . . . 5 𝑓𝑓𝑀 𝑓 finSupp 𝑍
3 nfv 1917 . . . . 5 𝑓 𝑈 ≠ ∅
42, 3nfan 1902 . . . 4 𝑓(∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)
51, 4nfan 1902 . . 3 𝑓((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅))
6 suppssdm 7993 . . . . . . . . . . 11 (𝑓 supp 𝑍) ⊆ dom 𝑓
7 ssel2 3916 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅m0))
8 elmapfn 8653 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅m0) → 𝑓 Fn ℕ0)
9 fndm 6536 . . . . . . . . . . . . . 14 (𝑓 Fn ℕ0 → dom 𝑓 = ℕ0)
10 eqimss 3977 . . . . . . . . . . . . . 14 (dom 𝑓 = ℕ0 → dom 𝑓 ⊆ ℕ0)
119, 10syl 17 . . . . . . . . . . . . 13 (𝑓 Fn ℕ0 → dom 𝑓 ⊆ ℕ0)
127, 8, 113syl 18 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
13123ad2antl1 1184 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
146, 13sstrid 3932 . . . . . . . . . 10 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℕ0)
1514sseld 3920 . . . . . . . . 9 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ ℕ0))
1615adantlr 712 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ ℕ0))
1716imp 407 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 ∈ ℕ0)
18 fsuppmapnn0fiub.u . . . . . . . . . 10 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
19 fsuppmapnn0fiub.s . . . . . . . . . 10 𝑆 = sup(𝑈, ℝ, < )
2018, 19fsuppmapnn0fiublem 13710 . . . . . . . . 9 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))
2120imp 407 . . . . . . . 8 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑆 ∈ ℕ0)
2221ad2antrr 723 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑆 ∈ ℕ0)
237, 8, 93syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
2423ex 413 . . . . . . . . . . . . . . . . . 18 (𝑀 ⊆ (𝑅m0) → (𝑓𝑀 → dom 𝑓 = ℕ0))
25243ad2ant1 1132 . . . . . . . . . . . . . . . . 17 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀 → dom 𝑓 = ℕ0))
2625adantr 481 . . . . . . . . . . . . . . . 16 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → dom 𝑓 = ℕ0))
2726imp 407 . . . . . . . . . . . . . . 15 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
28 nn0ssre 12237 . . . . . . . . . . . . . . 15 0 ⊆ ℝ
2927, 28eqsstrdi 3975 . . . . . . . . . . . . . 14 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℝ)
306, 29sstrid 3932 . . . . . . . . . . . . 13 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℝ)
3130ex 413 . . . . . . . . . . . 12 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ ℝ))
325, 31ralrimi 3141 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3332ad2antrr 723 . . . . . . . . . 10 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
34 iunss 4975 . . . . . . . . . 10 ( 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3533, 34sylibr 233 . . . . . . . . 9 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3618, 35eqsstrid 3969 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑈 ⊆ ℝ)
37 simp2 1136 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → 𝑀 ∈ Fin)
38 id 22 . . . . . . . . . . . . . . 15 (𝑓 finSupp 𝑍𝑓 finSupp 𝑍)
3938fsuppimpd 9135 . . . . . . . . . . . . . 14 (𝑓 finSupp 𝑍 → (𝑓 supp 𝑍) ∈ Fin)
4039ralimi 3087 . . . . . . . . . . . . 13 (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4140adantr 481 . . . . . . . . . . . 12 ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4237, 41anim12i 613 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin))
4342ad2antrr 723 . . . . . . . . . 10 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → (𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin))
44 iunfi 9107 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4543, 44syl 17 . . . . . . . . 9 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4618, 45eqeltrid 2843 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑈 ∈ Fin)
47 rspe 3237 . . . . . . . . . . 11 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → ∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍))
48 eliun 4928 . . . . . . . . . . 11 (𝑥 𝑓𝑀 (𝑓 supp 𝑍) ↔ ∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍))
4947, 48sylibr 233 . . . . . . . . . 10 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 𝑓𝑀 (𝑓 supp 𝑍))
5049, 18eleqtrrdi 2850 . . . . . . . . 9 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑈)
5150adantll 711 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑈)
5219a1i 11 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑆 = sup(𝑈, ℝ, < ))
5336, 46, 51, 52supfirege 11962 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑆)
54 elfz2nn0 13347 . . . . . . 7 (𝑥 ∈ (0...𝑆) ↔ (𝑥 ∈ ℕ0𝑆 ∈ ℕ0𝑥𝑆))
5517, 22, 53, 54syl3anbrc 1342 . . . . . 6 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 ∈ (0...𝑆))
5655ex 413 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ (0...𝑆)))
5756ssrdv 3927 . . . 4 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ (0...𝑆))
5857ex 413 . . 3 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ (0...𝑆)))
595, 58ralrimi 3141 . 2 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆))
6059ex 413 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  wss 3887  c0 4256   ciun 4924   class class class wbr 5074  dom cdm 5589   Fn wfn 6428  (class class class)co 7275   supp csupp 7977  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128  supcsup 9199  cr 10870  0cc0 10871   < clt 11009  cle 11010  0cn0 12233  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  fsuppmapnn0fiubex  13712
  Copyright terms: Public domain W3C validator