MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiub Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiub 13360
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0 and ending with the supremum of the union of the support of these functions. (Contributed by AV, 2-Oct-2019.) (Proof shortened by JJ, 2-Aug-2021.)
Hypotheses
Ref Expression
fsuppmapnn0fiub.u 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
fsuppmapnn0fiub.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
fsuppmapnn0fiub ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆)))
Distinct variable groups:   𝑓,𝑀   𝑅,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑍
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem fsuppmapnn0fiub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . 4 𝑓(𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
2 nfra1 3219 . . . . 5 𝑓𝑓𝑀 𝑓 finSupp 𝑍
3 nfv 1915 . . . . 5 𝑓 𝑈 ≠ ∅
42, 3nfan 1900 . . . 4 𝑓(∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)
51, 4nfan 1900 . . 3 𝑓((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅))
6 suppssdm 7843 . . . . . . . . . . 11 (𝑓 supp 𝑍) ⊆ dom 𝑓
7 ssel2 3962 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅m0))
8 elmapfn 8429 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅m0) → 𝑓 Fn ℕ0)
9 fndm 6455 . . . . . . . . . . . . . 14 (𝑓 Fn ℕ0 → dom 𝑓 = ℕ0)
10 eqimss 4023 . . . . . . . . . . . . . 14 (dom 𝑓 = ℕ0 → dom 𝑓 ⊆ ℕ0)
119, 10syl 17 . . . . . . . . . . . . 13 (𝑓 Fn ℕ0 → dom 𝑓 ⊆ ℕ0)
127, 8, 113syl 18 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
13123ad2antl1 1181 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
146, 13sstrid 3978 . . . . . . . . . 10 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℕ0)
1514sseld 3966 . . . . . . . . 9 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ ℕ0))
1615adantlr 713 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ ℕ0))
1716imp 409 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 ∈ ℕ0)
18 fsuppmapnn0fiub.u . . . . . . . . . 10 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
19 fsuppmapnn0fiub.s . . . . . . . . . 10 𝑆 = sup(𝑈, ℝ, < )
2018, 19fsuppmapnn0fiublem 13359 . . . . . . . . 9 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))
2120imp 409 . . . . . . . 8 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑆 ∈ ℕ0)
2221ad2antrr 724 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑆 ∈ ℕ0)
237, 8, 93syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
2423ex 415 . . . . . . . . . . . . . . . . . 18 (𝑀 ⊆ (𝑅m0) → (𝑓𝑀 → dom 𝑓 = ℕ0))
25243ad2ant1 1129 . . . . . . . . . . . . . . . . 17 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀 → dom 𝑓 = ℕ0))
2625adantr 483 . . . . . . . . . . . . . . . 16 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → dom 𝑓 = ℕ0))
2726imp 409 . . . . . . . . . . . . . . 15 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
28 nn0ssre 11902 . . . . . . . . . . . . . . 15 0 ⊆ ℝ
2927, 28eqsstrdi 4021 . . . . . . . . . . . . . 14 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℝ)
306, 29sstrid 3978 . . . . . . . . . . . . 13 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℝ)
3130ex 415 . . . . . . . . . . . 12 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ ℝ))
325, 31ralrimi 3216 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3332ad2antrr 724 . . . . . . . . . 10 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
34 iunss 4969 . . . . . . . . . 10 ( 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3533, 34sylibr 236 . . . . . . . . 9 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3618, 35eqsstrid 4015 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑈 ⊆ ℝ)
37 simp2 1133 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → 𝑀 ∈ Fin)
38 id 22 . . . . . . . . . . . . . . 15 (𝑓 finSupp 𝑍𝑓 finSupp 𝑍)
3938fsuppimpd 8840 . . . . . . . . . . . . . 14 (𝑓 finSupp 𝑍 → (𝑓 supp 𝑍) ∈ Fin)
4039ralimi 3160 . . . . . . . . . . . . 13 (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4140adantr 483 . . . . . . . . . . . 12 ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4237, 41anim12i 614 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin))
4342ad2antrr 724 . . . . . . . . . 10 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → (𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin))
44 iunfi 8812 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4543, 44syl 17 . . . . . . . . 9 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4618, 45eqeltrid 2917 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑈 ∈ Fin)
47 rspe 3304 . . . . . . . . . . 11 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → ∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍))
48 eliun 4923 . . . . . . . . . . 11 (𝑥 𝑓𝑀 (𝑓 supp 𝑍) ↔ ∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍))
4947, 48sylibr 236 . . . . . . . . . 10 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 𝑓𝑀 (𝑓 supp 𝑍))
5049, 18eleqtrrdi 2924 . . . . . . . . 9 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑈)
5150adantll 712 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑈)
5219a1i 11 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑆 = sup(𝑈, ℝ, < ))
5336, 46, 51, 52supfirege 11627 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑆)
54 elfz2nn0 12999 . . . . . . 7 (𝑥 ∈ (0...𝑆) ↔ (𝑥 ∈ ℕ0𝑆 ∈ ℕ0𝑥𝑆))
5517, 22, 53, 54syl3anbrc 1339 . . . . . 6 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 ∈ (0...𝑆))
5655ex 415 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ (0...𝑆)))
5756ssrdv 3973 . . . 4 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ (0...𝑆))
5857ex 415 . . 3 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ (0...𝑆)))
595, 58ralrimi 3216 . 2 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆))
6059ex 415 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  wss 3936  c0 4291   ciun 4919   class class class wbr 5066  dom cdm 5555   Fn wfn 6350  (class class class)co 7156   supp csupp 7830  m cmap 8406  Fincfn 8509   finSupp cfsupp 8833  supcsup 8904  cr 10536  0cc0 10537   < clt 10675  cle 10676  0cn0 11898  ...cfz 12893
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-map 8408  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-n0 11899  df-z 11983  df-uz 12245  df-fz 12894
This theorem is referenced by:  fsuppmapnn0fiubex  13361
  Copyright terms: Public domain W3C validator