MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiub Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiub 14042
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0 and ending with the supremum of the union of the support of these functions. (Contributed by AV, 2-Oct-2019.) (Proof shortened by JJ, 2-Aug-2021.)
Hypotheses
Ref Expression
fsuppmapnn0fiub.u 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
fsuppmapnn0fiub.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
fsuppmapnn0fiub ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆)))
Distinct variable groups:   𝑓,𝑀   𝑅,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑍
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem fsuppmapnn0fiub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . 4 𝑓(𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
2 nfra1 3290 . . . . 5 𝑓𝑓𝑀 𝑓 finSupp 𝑍
3 nfv 1913 . . . . 5 𝑓 𝑈 ≠ ∅
42, 3nfan 1898 . . . 4 𝑓(∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)
51, 4nfan 1898 . . 3 𝑓((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅))
6 suppssdm 8218 . . . . . . . . . . 11 (𝑓 supp 𝑍) ⊆ dom 𝑓
7 ssel2 4003 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅m0))
8 elmapfn 8923 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅m0) → 𝑓 Fn ℕ0)
9 fndm 6682 . . . . . . . . . . . . 13 (𝑓 Fn ℕ0 → dom 𝑓 = ℕ0)
10 eqimss 4067 . . . . . . . . . . . . 13 (dom 𝑓 = ℕ0 → dom 𝑓 ⊆ ℕ0)
117, 8, 9, 104syl 19 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
12113ad2antl1 1185 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
136, 12sstrid 4020 . . . . . . . . . 10 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℕ0)
1413sseld 4007 . . . . . . . . 9 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ ℕ0))
1514adantlr 714 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ ℕ0))
1615imp 406 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 ∈ ℕ0)
17 fsuppmapnn0fiub.u . . . . . . . . . 10 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
18 fsuppmapnn0fiub.s . . . . . . . . . 10 𝑆 = sup(𝑈, ℝ, < )
1917, 18fsuppmapnn0fiublem 14041 . . . . . . . . 9 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))
2019imp 406 . . . . . . . 8 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑆 ∈ ℕ0)
2120ad2antrr 725 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑆 ∈ ℕ0)
227, 8, 93syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
2322ex 412 . . . . . . . . . . . . . . . . . 18 (𝑀 ⊆ (𝑅m0) → (𝑓𝑀 → dom 𝑓 = ℕ0))
24233ad2ant1 1133 . . . . . . . . . . . . . . . . 17 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀 → dom 𝑓 = ℕ0))
2524adantr 480 . . . . . . . . . . . . . . . 16 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → dom 𝑓 = ℕ0))
2625imp 406 . . . . . . . . . . . . . . 15 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
27 nn0ssre 12557 . . . . . . . . . . . . . . 15 0 ⊆ ℝ
2826, 27eqsstrdi 4063 . . . . . . . . . . . . . 14 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℝ)
296, 28sstrid 4020 . . . . . . . . . . . . 13 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℝ)
3029ex 412 . . . . . . . . . . . 12 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ ℝ))
315, 30ralrimi 3263 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3231ad2antrr 725 . . . . . . . . . 10 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
33 iunss 5068 . . . . . . . . . 10 ( 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3432, 33sylibr 234 . . . . . . . . 9 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3517, 34eqsstrid 4057 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑈 ⊆ ℝ)
36 simp2 1137 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → 𝑀 ∈ Fin)
37 id 22 . . . . . . . . . . . . . . 15 (𝑓 finSupp 𝑍𝑓 finSupp 𝑍)
3837fsuppimpd 9439 . . . . . . . . . . . . . 14 (𝑓 finSupp 𝑍 → (𝑓 supp 𝑍) ∈ Fin)
3938ralimi 3089 . . . . . . . . . . . . 13 (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4039adantr 480 . . . . . . . . . . . 12 ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4136, 40anim12i 612 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin))
4241ad2antrr 725 . . . . . . . . . 10 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → (𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin))
43 iunfi 9411 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4442, 43syl 17 . . . . . . . . 9 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4517, 44eqeltrid 2848 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑈 ∈ Fin)
46 rspe 3255 . . . . . . . . . . 11 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → ∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍))
47 eliun 5019 . . . . . . . . . . 11 (𝑥 𝑓𝑀 (𝑓 supp 𝑍) ↔ ∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍))
4846, 47sylibr 234 . . . . . . . . . 10 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 𝑓𝑀 (𝑓 supp 𝑍))
4948, 17eleqtrrdi 2855 . . . . . . . . 9 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑈)
5049adantll 713 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑈)
5118a1i 11 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑆 = sup(𝑈, ℝ, < ))
5235, 45, 50, 51supfirege 12282 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑆)
53 elfz2nn0 13675 . . . . . . 7 (𝑥 ∈ (0...𝑆) ↔ (𝑥 ∈ ℕ0𝑆 ∈ ℕ0𝑥𝑆))
5416, 21, 52, 53syl3anbrc 1343 . . . . . 6 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 ∈ (0...𝑆))
5554ex 412 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ (0...𝑆)))
5655ssrdv 4014 . . . 4 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ (0...𝑆))
5756ex 412 . . 3 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ (0...𝑆)))
585, 57ralrimi 3263 . 2 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆))
5958ex 412 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  wss 3976  c0 4352   ciun 5015   class class class wbr 5166  dom cdm 5700   Fn wfn 6568  (class class class)co 7448   supp csupp 8201  m cmap 8884  Fincfn 9003   finSupp cfsupp 9431  supcsup 9509  cr 11183  0cc0 11184   < clt 11324  cle 11325  0cn0 12553  ...cfz 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568
This theorem is referenced by:  fsuppmapnn0fiubex  14043
  Copyright terms: Public domain W3C validator