MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fsuppmapnn0fiub Structured version   Visualization version   GIF version

Theorem fsuppmapnn0fiub 13905
Description: If all functions of a finite set of functions over the nonnegative integers are finitely supported, then the support of all these functions is contained in a finite set of sequential integers starting at 0 and ending with the supremum of the union of the support of these functions. (Contributed by AV, 2-Oct-2019.) (Proof shortened by JJ, 2-Aug-2021.)
Hypotheses
Ref Expression
fsuppmapnn0fiub.u 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
fsuppmapnn0fiub.s 𝑆 = sup(𝑈, ℝ, < )
Assertion
Ref Expression
fsuppmapnn0fiub ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆)))
Distinct variable groups:   𝑓,𝑀   𝑅,𝑓   𝑈,𝑓   𝑓,𝑉   𝑓,𝑍
Allowed substitution hint:   𝑆(𝑓)

Proof of Theorem fsuppmapnn0fiub
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . 4 𝑓(𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉)
2 nfra1 3266 . . . . 5 𝑓𝑓𝑀 𝑓 finSupp 𝑍
3 nfv 1918 . . . . 5 𝑓 𝑈 ≠ ∅
42, 3nfan 1903 . . . 4 𝑓(∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)
51, 4nfan 1903 . . 3 𝑓((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅))
6 suppssdm 8112 . . . . . . . . . . 11 (𝑓 supp 𝑍) ⊆ dom 𝑓
7 ssel2 3943 . . . . . . . . . . . . 13 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → 𝑓 ∈ (𝑅m0))
8 elmapfn 8809 . . . . . . . . . . . . 13 (𝑓 ∈ (𝑅m0) → 𝑓 Fn ℕ0)
9 fndm 6609 . . . . . . . . . . . . . 14 (𝑓 Fn ℕ0 → dom 𝑓 = ℕ0)
10 eqimss 4004 . . . . . . . . . . . . . 14 (dom 𝑓 = ℕ0 → dom 𝑓 ⊆ ℕ0)
119, 10syl 17 . . . . . . . . . . . . 13 (𝑓 Fn ℕ0 → dom 𝑓 ⊆ ℕ0)
127, 8, 113syl 18 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
13123ad2antl1 1186 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℕ0)
146, 13sstrid 3959 . . . . . . . . . 10 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℕ0)
1514sseld 3947 . . . . . . . . 9 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ ℕ0))
1615adantlr 714 . . . . . . . 8 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ ℕ0))
1716imp 408 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 ∈ ℕ0)
18 fsuppmapnn0fiub.u . . . . . . . . . 10 𝑈 = 𝑓𝑀 (𝑓 supp 𝑍)
19 fsuppmapnn0fiub.s . . . . . . . . . 10 𝑆 = sup(𝑈, ℝ, < )
2018, 19fsuppmapnn0fiublem 13904 . . . . . . . . 9 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → 𝑆 ∈ ℕ0))
2120imp 408 . . . . . . . 8 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → 𝑆 ∈ ℕ0)
2221ad2antrr 725 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑆 ∈ ℕ0)
237, 8, 93syl 18 . . . . . . . . . . . . . . . . . . 19 ((𝑀 ⊆ (𝑅m0) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
2423ex 414 . . . . . . . . . . . . . . . . . 18 (𝑀 ⊆ (𝑅m0) → (𝑓𝑀 → dom 𝑓 = ℕ0))
25243ad2ant1 1134 . . . . . . . . . . . . . . . . 17 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → (𝑓𝑀 → dom 𝑓 = ℕ0))
2625adantr 482 . . . . . . . . . . . . . . . 16 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → dom 𝑓 = ℕ0))
2726imp 408 . . . . . . . . . . . . . . 15 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 = ℕ0)
28 nn0ssre 12425 . . . . . . . . . . . . . . 15 0 ⊆ ℝ
2927, 28eqsstrdi 4002 . . . . . . . . . . . . . 14 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → dom 𝑓 ⊆ ℝ)
306, 29sstrid 3959 . . . . . . . . . . . . 13 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ ℝ)
3130ex 414 . . . . . . . . . . . 12 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ ℝ))
325, 31ralrimi 3239 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3332ad2antrr 725 . . . . . . . . . 10 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
34 iunss 5009 . . . . . . . . . 10 ( 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ ↔ ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3533, 34sylibr 233 . . . . . . . . 9 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑓𝑀 (𝑓 supp 𝑍) ⊆ ℝ)
3618, 35eqsstrid 3996 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑈 ⊆ ℝ)
37 simp2 1138 . . . . . . . . . . . 12 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → 𝑀 ∈ Fin)
38 id 22 . . . . . . . . . . . . . . 15 (𝑓 finSupp 𝑍𝑓 finSupp 𝑍)
3938fsuppimpd 9319 . . . . . . . . . . . . . 14 (𝑓 finSupp 𝑍 → (𝑓 supp 𝑍) ∈ Fin)
4039ralimi 3083 . . . . . . . . . . . . 13 (∀𝑓𝑀 𝑓 finSupp 𝑍 → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4140adantr 482 . . . . . . . . . . . 12 ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4237, 41anim12i 614 . . . . . . . . . . 11 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin))
4342ad2antrr 725 . . . . . . . . . 10 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → (𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin))
44 iunfi 9290 . . . . . . . . . 10 ((𝑀 ∈ Fin ∧ ∀𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4543, 44syl 17 . . . . . . . . 9 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑓𝑀 (𝑓 supp 𝑍) ∈ Fin)
4618, 45eqeltrid 2838 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑈 ∈ Fin)
47 rspe 3231 . . . . . . . . . . 11 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → ∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍))
48 eliun 4962 . . . . . . . . . . 11 (𝑥 𝑓𝑀 (𝑓 supp 𝑍) ↔ ∃𝑓𝑀 𝑥 ∈ (𝑓 supp 𝑍))
4947, 48sylibr 233 . . . . . . . . . 10 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 𝑓𝑀 (𝑓 supp 𝑍))
5049, 18eleqtrrdi 2845 . . . . . . . . 9 ((𝑓𝑀𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑈)
5150adantll 713 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑈)
5219a1i 11 . . . . . . . 8 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑆 = sup(𝑈, ℝ, < ))
5336, 46, 51, 52supfirege 12150 . . . . . . 7 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥𝑆)
54 elfz2nn0 13541 . . . . . . 7 (𝑥 ∈ (0...𝑆) ↔ (𝑥 ∈ ℕ0𝑆 ∈ ℕ0𝑥𝑆))
5517, 22, 53, 54syl3anbrc 1344 . . . . . 6 (((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) ∧ 𝑥 ∈ (𝑓 supp 𝑍)) → 𝑥 ∈ (0...𝑆))
5655ex 414 . . . . 5 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑥 ∈ (𝑓 supp 𝑍) → 𝑥 ∈ (0...𝑆)))
5756ssrdv 3954 . . . 4 ((((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) ∧ 𝑓𝑀) → (𝑓 supp 𝑍) ⊆ (0...𝑆))
5857ex 414 . . 3 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → (𝑓𝑀 → (𝑓 supp 𝑍) ⊆ (0...𝑆)))
595, 58ralrimi 3239 . 2 (((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) ∧ (∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅)) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆))
6059ex 414 1 ((𝑀 ⊆ (𝑅m0) ∧ 𝑀 ∈ Fin ∧ 𝑍𝑉) → ((∀𝑓𝑀 𝑓 finSupp 𝑍𝑈 ≠ ∅) → ∀𝑓𝑀 (𝑓 supp 𝑍) ⊆ (0...𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2940  wral 3061  wrex 3070  wss 3914  c0 4286   ciun 4958   class class class wbr 5109  dom cdm 5637   Fn wfn 6495  (class class class)co 7361   supp csupp 8096  m cmap 8771  Fincfn 8889   finSupp cfsupp 9311  supcsup 9384  cr 11058  0cc0 11059   < clt 11197  cle 11198  0cn0 12421  ...cfz 13433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676  ax-cnex 11115  ax-resscn 11116  ax-1cn 11117  ax-icn 11118  ax-addcl 11119  ax-addrcl 11120  ax-mulcl 11121  ax-mulrcl 11122  ax-mulcom 11123  ax-addass 11124  ax-mulass 11125  ax-distr 11126  ax-i2m1 11127  ax-1ne0 11128  ax-1rid 11129  ax-rnegex 11130  ax-rrecex 11131  ax-cnre 11132  ax-pre-lttri 11133  ax-pre-lttrn 11134  ax-pre-ltadd 11135  ax-pre-mulgt0 11136
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3449  df-sbc 3744  df-csb 3860  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3933  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-iun 4960  df-br 5110  df-opab 5172  df-mpt 5193  df-tr 5227  df-id 5535  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5592  df-we 5594  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-rn 5648  df-res 5649  df-ima 5650  df-pred 6257  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6452  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-riota 7317  df-ov 7364  df-oprab 7365  df-mpo 7366  df-om 7807  df-1st 7925  df-2nd 7926  df-supp 8097  df-frecs 8216  df-wrecs 8247  df-recs 8321  df-rdg 8360  df-er 8654  df-map 8773  df-en 8890  df-dom 8891  df-sdom 8892  df-fin 8893  df-fsupp 9312  df-sup 9386  df-pnf 11199  df-mnf 11200  df-xr 11201  df-ltxr 11202  df-le 11203  df-sub 11395  df-neg 11396  df-nn 12162  df-n0 12422  df-z 12508  df-uz 12772  df-fz 13434
This theorem is referenced by:  fsuppmapnn0fiubex  13906
  Copyright terms: Public domain W3C validator