![]() |
Mathbox for Giovanni Mascellani |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > scottn0f | Structured version Visualization version GIF version |
Description: A version of scott0f 34888 with inequalities instead of equalities. (Contributed by Giovanni Mascellani, 19-Aug-2018.) |
Ref | Expression |
---|---|
scottn0f.1 | ⊢ Ⅎ𝑦𝐴 |
scottn0f.2 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
scottn0f | ⊢ (𝐴 ≠ ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scottn0f.1 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | scottn0f.2 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | 1, 2 | scott0f 34888 | . 2 ⊢ (𝐴 = ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} = ∅) |
4 | 3 | necon3bii 3020 | 1 ⊢ (𝐴 ≠ ∅ ↔ {𝑥 ∈ 𝐴 ∣ ∀𝑦 ∈ 𝐴 (rank‘𝑥) ⊆ (rank‘𝑦)} ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 198 Ⅎwnfc 2917 ≠ wne 2968 ∀wral 3089 {crab 3093 ⊆ wss 3830 ∅c0 4179 ‘cfv 6188 rankcrnk 8986 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2751 ax-sep 5060 ax-nul 5067 ax-pow 5119 ax-pr 5186 ax-un 7279 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2760 df-cleq 2772 df-clel 2847 df-nfc 2919 df-ne 2969 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3418 df-sbc 3683 df-csb 3788 df-dif 3833 df-un 3835 df-in 3837 df-ss 3844 df-pss 3846 df-nul 4180 df-if 4351 df-pw 4424 df-sn 4442 df-pr 4444 df-tp 4446 df-op 4448 df-uni 4713 df-int 4750 df-iun 4794 df-iin 4795 df-br 4930 df-opab 4992 df-mpt 5009 df-tr 5031 df-id 5312 df-eprel 5317 df-po 5326 df-so 5327 df-fr 5366 df-we 5368 df-xp 5413 df-rel 5414 df-cnv 5415 df-co 5416 df-dm 5417 df-rn 5418 df-res 5419 df-ima 5420 df-pred 5986 df-ord 6032 df-on 6033 df-lim 6034 df-suc 6035 df-iota 6152 df-fun 6190 df-fn 6191 df-f 6192 df-f1 6193 df-fo 6194 df-f1o 6195 df-fv 6196 df-om 7397 df-wrecs 7750 df-recs 7812 df-rdg 7850 df-r1 8987 df-rank 8988 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |