![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpreimalt | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfpreimalt.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpreimalt.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfpreimalt.d | ⊢ 𝐷 = dom 𝐹 |
smfpreimalt.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
Ref | Expression |
---|---|
smfpreimalt | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpreimalt.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
2 | smfpreimalt.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
3 | smfpreimalt.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | smfpreimalt.d | . . . . 5 ⊢ 𝐷 = dom 𝐹 | |
5 | 3, 4 | issmf 41729 | . . . 4 ⊢ (𝜑 → (𝐹 ∈ (SMblFn‘𝑆) ↔ (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)))) |
6 | 2, 5 | mpbid 224 | . . 3 ⊢ (𝜑 → (𝐷 ⊆ ∪ 𝑆 ∧ 𝐹:𝐷⟶ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷))) |
7 | 6 | simp3d 1178 | . 2 ⊢ (𝜑 → ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) |
8 | breq2 4879 | . . . . 5 ⊢ (𝑎 = 𝐴 → ((𝐹‘𝑥) < 𝑎 ↔ (𝐹‘𝑥) < 𝐴)) | |
9 | 8 | rabbidv 3402 | . . . 4 ⊢ (𝑎 = 𝐴 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} = {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴}) |
10 | 9 | eleq1d 2891 | . . 3 ⊢ (𝑎 = 𝐴 → ({𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷) ↔ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷))) |
11 | 10 | rspcva 3524 | . 2 ⊢ ((𝐴 ∈ ℝ ∧ ∀𝑎 ∈ ℝ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝑎} ∈ (𝑆 ↾t 𝐷)) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
12 | 1, 7, 11 | syl2anc 579 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) < 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1111 = wceq 1656 ∈ wcel 2164 ∀wral 3117 {crab 3121 ⊆ wss 3798 ∪ cuni 4660 class class class wbr 4875 dom cdm 5346 ⟶wf 6123 ‘cfv 6127 (class class class)co 6910 ℝcr 10258 < clt 10398 ↾t crest 16441 SAlgcsalg 41317 SMblFncsmblfn 41701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 ax-cnex 10315 ax-resscn 10316 ax-pre-lttri 10333 ax-pre-lttrn 10334 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3or 1112 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ne 3000 df-nel 3103 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-csb 3758 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-iun 4744 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-po 5265 df-so 5266 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-res 5358 df-ima 5359 df-iota 6090 df-fun 6129 df-fn 6130 df-f 6131 df-f1 6132 df-fo 6133 df-f1o 6134 df-fv 6135 df-ov 6913 df-oprab 6914 df-mpt2 6915 df-1st 7433 df-2nd 7434 df-er 8014 df-pm 8130 df-en 8229 df-dom 8230 df-sdom 8231 df-pnf 10400 df-mnf 10401 df-xr 10402 df-ltxr 10403 df-le 10404 df-ioo 12474 df-ico 12476 df-smblfn 41702 |
This theorem is referenced by: sssmf 41739 smfsssmf 41744 issmfle 41746 smflimlem6 41776 smfco 41801 |
Copyright terms: Public domain | W3C validator |