Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpreimalt Structured version   Visualization version   GIF version

Theorem smfpreimalt 46032
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of an open interval unbounded below is in the subspace sigma-algebra induced by its domain. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfpreimalt.s (πœ‘ β†’ 𝑆 ∈ SAlg)
smfpreimalt.f (πœ‘ β†’ 𝐹 ∈ (SMblFnβ€˜π‘†))
smfpreimalt.d 𝐷 = dom 𝐹
smfpreimalt.a (πœ‘ β†’ 𝐴 ∈ ℝ)
Assertion
Ref Expression
smfpreimalt (πœ‘ β†’ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < 𝐴} ∈ (𝑆 β†Ύt 𝐷))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐷   π‘₯,𝐹
Allowed substitution hints:   πœ‘(π‘₯)   𝑆(π‘₯)

Proof of Theorem smfpreimalt
Dummy variable π‘Ž is distinct from all other variables.
StepHypRef Expression
1 smfpreimalt.a . 2 (πœ‘ β†’ 𝐴 ∈ ℝ)
2 smfpreimalt.f . . . 4 (πœ‘ β†’ 𝐹 ∈ (SMblFnβ€˜π‘†))
3 smfpreimalt.s . . . . 5 (πœ‘ β†’ 𝑆 ∈ SAlg)
4 smfpreimalt.d . . . . 5 𝐷 = dom 𝐹
53, 4issmf 46029 . . . 4 (πœ‘ β†’ (𝐹 ∈ (SMblFnβ€˜π‘†) ↔ (𝐷 βŠ† βˆͺ 𝑆 ∧ 𝐹:π·βŸΆβ„ ∧ βˆ€π‘Ž ∈ ℝ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷))))
62, 5mpbid 231 . . 3 (πœ‘ β†’ (𝐷 βŠ† βˆͺ 𝑆 ∧ 𝐹:π·βŸΆβ„ ∧ βˆ€π‘Ž ∈ ℝ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷)))
76simp3d 1142 . 2 (πœ‘ β†’ βˆ€π‘Ž ∈ ℝ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷))
8 breq2 5146 . . . . 5 (π‘Ž = 𝐴 β†’ ((πΉβ€˜π‘₯) < π‘Ž ↔ (πΉβ€˜π‘₯) < 𝐴))
98rabbidv 3435 . . . 4 (π‘Ž = 𝐴 β†’ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} = {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < 𝐴})
109eleq1d 2813 . . 3 (π‘Ž = 𝐴 β†’ ({π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷) ↔ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < 𝐴} ∈ (𝑆 β†Ύt 𝐷)))
1110rspcva 3605 . 2 ((𝐴 ∈ ℝ ∧ βˆ€π‘Ž ∈ ℝ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < π‘Ž} ∈ (𝑆 β†Ύt 𝐷)) β†’ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < 𝐴} ∈ (𝑆 β†Ύt 𝐷))
121, 7, 11syl2anc 583 1 (πœ‘ β†’ {π‘₯ ∈ 𝐷 ∣ (πΉβ€˜π‘₯) < 𝐴} ∈ (𝑆 β†Ύt 𝐷))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1085   = wceq 1534   ∈ wcel 2099  βˆ€wral 3056  {crab 3427   βŠ† wss 3944  βˆͺ cuni 4903   class class class wbr 5142  dom cdm 5672  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7414  β„cr 11123   < clt 11264   β†Ύt crest 17387  SAlgcsalg 45609  SMblFncsmblfn 45996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7732  ax-cnex 11180  ax-resscn 11181  ax-pre-lttri 11198  ax-pre-lttrn 11199
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-po 5584  df-so 5585  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7985  df-2nd 7986  df-er 8716  df-pm 8837  df-en 8954  df-dom 8955  df-sdom 8956  df-pnf 11266  df-mnf 11267  df-xr 11268  df-ltxr 11269  df-le 11270  df-ioo 13346  df-ico 13348  df-smblfn 45997
This theorem is referenced by:  sssmf  46039  smfsssmf  46044  issmfle  46046  smflimlem6  46077  smfco  46103
  Copyright terms: Public domain W3C validator