| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dveq0 | Structured version Visualization version GIF version | ||
| Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.) |
| Ref | Expression |
|---|---|
| dveq0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dveq0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dveq0.c | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| dveq0.d | ⊢ (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0})) |
| Ref | Expression |
|---|---|
| dveq0 | ⊢ (𝜑 → 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dveq0.c | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | |
| 2 | cncff 24793 | . . . 4 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 4 | 3 | ffnd 6692 | . 2 ⊢ (𝜑 → 𝐹 Fn (𝐴[,]𝐵)) |
| 5 | fvex 6874 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
| 6 | fnconstg 6751 | . . 3 ⊢ ((𝐹‘𝐴) ∈ V → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) | |
| 7 | 5, 6 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) |
| 8 | 5 | fvconst2 7181 | . . . 4 ⊢ (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥) = (𝐹‘𝐴)) |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥) = (𝐹‘𝐴)) |
| 10 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 11 | dveq0.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
| 13 | 12 | rexrd 11231 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*) |
| 14 | dveq0.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
| 16 | 15 | rexrd 11231 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
| 17 | elicc2 13379 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
| 18 | 11, 14, 17 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 19 | 18 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 20 | 19 | simp1d 1142 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 21 | 19 | simp2d 1143 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) |
| 22 | 19 | simp3d 1144 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
| 23 | 12, 20, 15, 21, 22 | letrd 11338 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐵) |
| 24 | lbicc2 13432 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
| 25 | 13, 16, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 26 | 10, 25 | ffvelcdmd 7060 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝐴) ∈ ℂ) |
| 27 | 3 | ffvelcdmda 7059 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
| 28 | 26, 27 | subcld 11540 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝐴) − (𝐹‘𝑥)) ∈ ℂ) |
| 29 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) | |
| 30 | 25, 29 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) |
| 31 | dveq0.d | . . . . . . . . . . 11 ⊢ (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0})) | |
| 32 | 31 | dmeqd 5872 | . . . . . . . . . 10 ⊢ (𝜑 → dom (ℝ D 𝐹) = dom ((𝐴(,)𝐵) × {0})) |
| 33 | c0ex 11175 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
| 34 | 33 | snnz 4743 | . . . . . . . . . . 11 ⊢ {0} ≠ ∅ |
| 35 | dmxp 5895 | . . . . . . . . . . 11 ⊢ ({0} ≠ ∅ → dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵)) | |
| 36 | 34, 35 | ax-mp 5 | . . . . . . . . . 10 ⊢ dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵) |
| 37 | 32, 36 | eqtrdi 2781 | . . . . . . . . 9 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 38 | 0red 11184 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 39 | 31 | fveq1d 6863 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑦) = (((𝐴(,)𝐵) × {0})‘𝑦)) |
| 40 | 33 | fvconst2 7181 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ (𝐴(,)𝐵) → (((𝐴(,)𝐵) × {0})‘𝑦) = 0) |
| 41 | 39, 40 | sylan9eq 2785 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) = 0) |
| 42 | 41 | abs00bd 15264 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) = 0) |
| 43 | 0le0 12294 | . . . . . . . . . 10 ⊢ 0 ≤ 0 | |
| 44 | 42, 43 | eqbrtrdi 5149 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 0) |
| 45 | 11, 14, 1, 37, 38, 44 | dvlip 25905 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ (0 · (abs‘(𝐴 − 𝑥)))) |
| 46 | 30, 45 | syldan 591 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ (0 · (abs‘(𝐴 − 𝑥)))) |
| 47 | 12 | recnd 11209 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ) |
| 48 | 20 | recnd 11209 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ) |
| 49 | 47, 48 | subcld 11540 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 − 𝑥) ∈ ℂ) |
| 50 | 49 | abscld 15412 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴 − 𝑥)) ∈ ℝ) |
| 51 | 50 | recnd 11209 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴 − 𝑥)) ∈ ℂ) |
| 52 | 51 | mul02d 11379 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (0 · (abs‘(𝐴 − 𝑥))) = 0) |
| 53 | 46, 52 | breqtrd 5136 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0) |
| 54 | 28 | absge0d 15420 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))) |
| 55 | 28 | abscld 15412 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ∈ ℝ) |
| 56 | 0re 11183 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 57 | letri3 11266 | . . . . . . 7 ⊢ (((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0 ↔ ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))))) | |
| 58 | 55, 56, 57 | sylancl 586 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0 ↔ ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))))) |
| 59 | 53, 54, 58 | mpbir2and 713 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0) |
| 60 | 28, 59 | abs00d 15422 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝐴) − (𝐹‘𝑥)) = 0) |
| 61 | 26, 27, 60 | subeq0d 11548 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝐴) = (𝐹‘𝑥)) |
| 62 | 9, 61 | eqtr2d 2766 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) = (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥)) |
| 63 | 4, 7, 62 | eqfnfvd 7009 | 1 ⊢ (𝜑 → 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∅c0 4299 {csn 4592 class class class wbr 5110 × cxp 5639 dom cdm 5641 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℂcc 11073 ℝcr 11074 0cc0 11075 · cmul 11080 ℝ*cxr 11214 ≤ cle 11216 − cmin 11412 (,)cioo 13313 [,]cicc 13316 abscabs 15207 –cn→ccncf 24776 D cdv 25771 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-submnd 18718 df-mulg 19007 df-cntz 19256 df-cmn 19719 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-cmp 23281 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-xms 24215 df-ms 24216 df-tms 24217 df-cncf 24778 df-limc 25774 df-dv 25775 |
| This theorem is referenced by: ftc2 25958 ftc2nc 37703 |
| Copyright terms: Public domain | W3C validator |