MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveq0 Structured version   Visualization version   GIF version

Theorem dveq0 26059
Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
dveq0.a (𝜑𝐴 ∈ ℝ)
dveq0.b (𝜑𝐵 ∈ ℝ)
dveq0.c (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
dveq0.d (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0}))
Assertion
Ref Expression
dveq0 (𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}))

Proof of Theorem dveq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dveq0.c . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
2 cncff 24938 . . . 4 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
43ffnd 6748 . 2 (𝜑𝐹 Fn (𝐴[,]𝐵))
5 fvex 6933 . . 3 (𝐹𝐴) ∈ V
6 fnconstg 6809 . . 3 ((𝐹𝐴) ∈ V → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
75, 6mp1i 13 . 2 (𝜑 → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
85fvconst2 7241 . . . 4 (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥) = (𝐹𝐴))
98adantl 481 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥) = (𝐹𝐴))
103adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
11 dveq0.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1211adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
1312rexrd 11340 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
14 dveq0.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
1615rexrd 11340 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
17 elicc2 13472 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1811, 14, 17syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1918biimpa 476 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
2019simp1d 1142 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2119simp2d 1143 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
2219simp3d 1144 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
2312, 20, 15, 21, 22letrd 11447 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝐵)
24 lbicc2 13524 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2513, 16, 23, 24syl3anc 1371 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ (𝐴[,]𝐵))
2610, 25ffvelcdmd 7119 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) ∈ ℂ)
273ffvelcdmda 7118 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2826, 27subcld 11647 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝐴) − (𝐹𝑥)) ∈ ℂ)
29 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3025, 29jca 511 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
31 dveq0.d . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0}))
3231dmeqd 5930 . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = dom ((𝐴(,)𝐵) × {0}))
33 c0ex 11284 . . . . . . . . . . . 12 0 ∈ V
3433snnz 4801 . . . . . . . . . . 11 {0} ≠ ∅
35 dmxp 5953 . . . . . . . . . . 11 ({0} ≠ ∅ → dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵))
3634, 35ax-mp 5 . . . . . . . . . 10 dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵)
3732, 36eqtrdi 2796 . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
38 0red 11293 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
3931fveq1d 6922 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑦) = (((𝐴(,)𝐵) × {0})‘𝑦))
4033fvconst2 7241 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) → (((𝐴(,)𝐵) × {0})‘𝑦) = 0)
4139, 40sylan9eq 2800 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) = 0)
4241abs00bd 15340 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) = 0)
43 0le0 12394 . . . . . . . . . 10 0 ≤ 0
4442, 43eqbrtrdi 5205 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 0)
4511, 14, 1, 37, 38, 44dvlip 26052 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ (0 · (abs‘(𝐴𝑥))))
4630, 45syldan 590 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ (0 · (abs‘(𝐴𝑥))))
4712recnd 11318 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ)
4820recnd 11318 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
4947, 48subcld 11647 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴𝑥) ∈ ℂ)
5049abscld 15485 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴𝑥)) ∈ ℝ)
5150recnd 11318 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴𝑥)) ∈ ℂ)
5251mul02d 11488 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (0 · (abs‘(𝐴𝑥))) = 0)
5346, 52breqtrd 5192 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0)
5428absge0d 15493 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))
5528abscld 15485 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ∈ ℝ)
56 0re 11292 . . . . . . 7 0 ∈ ℝ
57 letri3 11375 . . . . . . 7 (((abs‘((𝐹𝐴) − (𝐹𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹𝐴) − (𝐹𝑥))) = 0 ↔ ((abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))))
5855, 56, 57sylancl 585 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹𝐴) − (𝐹𝑥))) = 0 ↔ ((abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))))
5953, 54, 58mpbir2and 712 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) = 0)
6028, 59abs00d 15495 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝐴) − (𝐹𝑥)) = 0)
6126, 27, 60subeq0d 11655 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) = (𝐹𝑥))
629, 61eqtr2d 2781 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥))
634, 7, 62eqfnfvd 7067 1 (𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  c0 4352  {csn 4648   class class class wbr 5166   × cxp 5698  dom cdm 5700   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  cc 11182  cr 11183  0cc0 11184   · cmul 11189  *cxr 11323  cle 11325  cmin 11520  (,)cioo 13407  [,]cicc 13410  abscabs 15283  cnccncf 24921   D cdv 25918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-fbas 21384  df-fg 21385  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cld 23048  df-ntr 23049  df-cls 23050  df-nei 23127  df-lp 23165  df-perf 23166  df-cn 23256  df-cnp 23257  df-haus 23344  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-fil 23875  df-fm 23967  df-flim 23968  df-flf 23969  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-limc 25921  df-dv 25922
This theorem is referenced by:  ftc2  26105  ftc2nc  37662
  Copyright terms: Public domain W3C validator