MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveq0 Structured version   Visualization version   GIF version

Theorem dveq0 25069
Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
dveq0.a (𝜑𝐴 ∈ ℝ)
dveq0.b (𝜑𝐵 ∈ ℝ)
dveq0.c (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
dveq0.d (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0}))
Assertion
Ref Expression
dveq0 (𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}))

Proof of Theorem dveq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dveq0.c . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
2 cncff 23962 . . . 4 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
43ffnd 6585 . 2 (𝜑𝐹 Fn (𝐴[,]𝐵))
5 fvex 6769 . . 3 (𝐹𝐴) ∈ V
6 fnconstg 6646 . . 3 ((𝐹𝐴) ∈ V → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
75, 6mp1i 13 . 2 (𝜑 → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
85fvconst2 7061 . . . 4 (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥) = (𝐹𝐴))
98adantl 481 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥) = (𝐹𝐴))
103adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
11 dveq0.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1211adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
1312rexrd 10956 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
14 dveq0.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
1615rexrd 10956 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
17 elicc2 13073 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1811, 14, 17syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1918biimpa 476 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
2019simp1d 1140 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2119simp2d 1141 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
2219simp3d 1142 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
2312, 20, 15, 21, 22letrd 11062 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝐵)
24 lbicc2 13125 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2513, 16, 23, 24syl3anc 1369 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ (𝐴[,]𝐵))
2610, 25ffvelrnd 6944 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) ∈ ℂ)
273ffvelrnda 6943 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2826, 27subcld 11262 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝐴) − (𝐹𝑥)) ∈ ℂ)
29 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3025, 29jca 511 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
31 dveq0.d . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0}))
3231dmeqd 5803 . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = dom ((𝐴(,)𝐵) × {0}))
33 c0ex 10900 . . . . . . . . . . . 12 0 ∈ V
3433snnz 4709 . . . . . . . . . . 11 {0} ≠ ∅
35 dmxp 5827 . . . . . . . . . . 11 ({0} ≠ ∅ → dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵))
3634, 35ax-mp 5 . . . . . . . . . 10 dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵)
3732, 36eqtrdi 2795 . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
38 0red 10909 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
3931fveq1d 6758 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑦) = (((𝐴(,)𝐵) × {0})‘𝑦))
4033fvconst2 7061 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) → (((𝐴(,)𝐵) × {0})‘𝑦) = 0)
4139, 40sylan9eq 2799 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) = 0)
4241abs00bd 14931 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) = 0)
43 0le0 12004 . . . . . . . . . 10 0 ≤ 0
4442, 43eqbrtrdi 5109 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 0)
4511, 14, 1, 37, 38, 44dvlip 25062 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ (0 · (abs‘(𝐴𝑥))))
4630, 45syldan 590 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ (0 · (abs‘(𝐴𝑥))))
4712recnd 10934 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ)
4820recnd 10934 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
4947, 48subcld 11262 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴𝑥) ∈ ℂ)
5049abscld 15076 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴𝑥)) ∈ ℝ)
5150recnd 10934 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴𝑥)) ∈ ℂ)
5251mul02d 11103 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (0 · (abs‘(𝐴𝑥))) = 0)
5346, 52breqtrd 5096 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0)
5428absge0d 15084 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))
5528abscld 15076 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ∈ ℝ)
56 0re 10908 . . . . . . 7 0 ∈ ℝ
57 letri3 10991 . . . . . . 7 (((abs‘((𝐹𝐴) − (𝐹𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹𝐴) − (𝐹𝑥))) = 0 ↔ ((abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))))
5855, 56, 57sylancl 585 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹𝐴) − (𝐹𝑥))) = 0 ↔ ((abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))))
5953, 54, 58mpbir2and 709 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) = 0)
6028, 59abs00d 15086 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝐴) − (𝐹𝑥)) = 0)
6126, 27, 60subeq0d 11270 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) = (𝐹𝑥))
629, 61eqtr2d 2779 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥))
634, 7, 62eqfnfvd 6894 1 (𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  c0 4253  {csn 4558   class class class wbr 5070   × cxp 5578  dom cdm 5580   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   · cmul 10807  *cxr 10939  cle 10941  cmin 11135  (,)cioo 13008  [,]cicc 13011  abscabs 14873  cnccncf 23945   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  ftc2  25113  ftc2nc  35786
  Copyright terms: Public domain W3C validator