Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dveq0 | Structured version Visualization version GIF version |
Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.) |
Ref | Expression |
---|---|
dveq0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dveq0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dveq0.c | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
dveq0.d | ⊢ (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0})) |
Ref | Expression |
---|---|
dveq0 | ⊢ (𝜑 → 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dveq0.c | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | |
2 | cncff 23609 | . . . 4 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
4 | 3 | ffnd 6505 | . 2 ⊢ (𝜑 → 𝐹 Fn (𝐴[,]𝐵)) |
5 | fvex 6677 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
6 | fnconstg 6558 | . . 3 ⊢ ((𝐹‘𝐴) ∈ V → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) | |
7 | 5, 6 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) |
8 | 5 | fvconst2 6964 | . . . 4 ⊢ (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥) = (𝐹‘𝐴)) |
9 | 8 | adantl 485 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥) = (𝐹‘𝐴)) |
10 | 3 | adantr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
11 | dveq0.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
12 | 11 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
13 | 12 | rexrd 10743 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*) |
14 | dveq0.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
15 | 14 | adantr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
16 | 15 | rexrd 10743 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
17 | elicc2 12858 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
18 | 11, 14, 17 | syl2anc 587 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
19 | 18 | biimpa 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
20 | 19 | simp1d 1140 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
21 | 19 | simp2d 1141 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) |
22 | 19 | simp3d 1142 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
23 | 12, 20, 15, 21, 22 | letrd 10849 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐵) |
24 | lbicc2 12910 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
25 | 13, 16, 23, 24 | syl3anc 1369 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ (𝐴[,]𝐵)) |
26 | 10, 25 | ffvelrnd 6850 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝐴) ∈ ℂ) |
27 | 3 | ffvelrnda 6849 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
28 | 26, 27 | subcld 11049 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝐴) − (𝐹‘𝑥)) ∈ ℂ) |
29 | simpr 488 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) | |
30 | 25, 29 | jca 515 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) |
31 | dveq0.d | . . . . . . . . . . 11 ⊢ (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0})) | |
32 | 31 | dmeqd 5752 | . . . . . . . . . 10 ⊢ (𝜑 → dom (ℝ D 𝐹) = dom ((𝐴(,)𝐵) × {0})) |
33 | c0ex 10687 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
34 | 33 | snnz 4673 | . . . . . . . . . . 11 ⊢ {0} ≠ ∅ |
35 | dmxp 5776 | . . . . . . . . . . 11 ⊢ ({0} ≠ ∅ → dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵)) | |
36 | 34, 35 | ax-mp 5 | . . . . . . . . . 10 ⊢ dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵) |
37 | 32, 36 | eqtrdi 2810 | . . . . . . . . 9 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
38 | 0red 10696 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℝ) | |
39 | 31 | fveq1d 6666 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑦) = (((𝐴(,)𝐵) × {0})‘𝑦)) |
40 | 33 | fvconst2 6964 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ (𝐴(,)𝐵) → (((𝐴(,)𝐵) × {0})‘𝑦) = 0) |
41 | 39, 40 | sylan9eq 2814 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) = 0) |
42 | 41 | abs00bd 14713 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) = 0) |
43 | 0le0 11789 | . . . . . . . . . 10 ⊢ 0 ≤ 0 | |
44 | 42, 43 | eqbrtrdi 5076 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 0) |
45 | 11, 14, 1, 37, 38, 44 | dvlip 24707 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ (0 · (abs‘(𝐴 − 𝑥)))) |
46 | 30, 45 | syldan 594 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ (0 · (abs‘(𝐴 − 𝑥)))) |
47 | 12 | recnd 10721 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ) |
48 | 20 | recnd 10721 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ) |
49 | 47, 48 | subcld 11049 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 − 𝑥) ∈ ℂ) |
50 | 49 | abscld 14858 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴 − 𝑥)) ∈ ℝ) |
51 | 50 | recnd 10721 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴 − 𝑥)) ∈ ℂ) |
52 | 51 | mul02d 10890 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (0 · (abs‘(𝐴 − 𝑥))) = 0) |
53 | 46, 52 | breqtrd 5063 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0) |
54 | 28 | absge0d 14866 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))) |
55 | 28 | abscld 14858 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ∈ ℝ) |
56 | 0re 10695 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
57 | letri3 10778 | . . . . . . 7 ⊢ (((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0 ↔ ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))))) | |
58 | 55, 56, 57 | sylancl 589 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0 ↔ ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))))) |
59 | 53, 54, 58 | mpbir2and 712 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0) |
60 | 28, 59 | abs00d 14868 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝐴) − (𝐹‘𝑥)) = 0) |
61 | 26, 27, 60 | subeq0d 11057 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝐴) = (𝐹‘𝑥)) |
62 | 9, 61 | eqtr2d 2795 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) = (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥)) |
63 | 4, 7, 62 | eqfnfvd 6802 | 1 ⊢ (𝜑 → 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1085 = wceq 1539 ∈ wcel 2112 ≠ wne 2952 Vcvv 3410 ∅c0 4228 {csn 4526 class class class wbr 5037 × cxp 5527 dom cdm 5529 Fn wfn 6336 ⟶wf 6337 ‘cfv 6341 (class class class)co 7157 ℂcc 10587 ℝcr 10588 0cc0 10589 · cmul 10594 ℝ*cxr 10726 ≤ cle 10728 − cmin 10922 (,)cioo 12793 [,]cicc 12796 abscabs 14655 –cn→ccncf 23592 D cdv 24577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-rep 5161 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-resscn 10646 ax-1cn 10647 ax-icn 10648 ax-addcl 10649 ax-addrcl 10650 ax-mulcl 10651 ax-mulrcl 10652 ax-mulcom 10653 ax-addass 10654 ax-mulass 10655 ax-distr 10656 ax-i2m1 10657 ax-1ne0 10658 ax-1rid 10659 ax-rnegex 10660 ax-rrecex 10661 ax-cnre 10662 ax-pre-lttri 10663 ax-pre-lttrn 10664 ax-pre-ltadd 10665 ax-pre-mulgt0 10666 ax-pre-sup 10667 ax-addf 10668 ax-mulf 10669 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-nel 3057 df-ral 3076 df-rex 3077 df-reu 3078 df-rmo 3079 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-int 4843 df-iun 4889 df-iin 4890 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-se 5489 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-isom 6350 df-riota 7115 df-ov 7160 df-oprab 7161 df-mpo 7162 df-of 7412 df-om 7587 df-1st 7700 df-2nd 7701 df-supp 7843 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-1o 8119 df-2o 8120 df-er 8306 df-map 8425 df-pm 8426 df-ixp 8494 df-en 8542 df-dom 8543 df-sdom 8544 df-fin 8545 df-fsupp 8881 df-fi 8922 df-sup 8953 df-inf 8954 df-oi 9021 df-card 9415 df-pnf 10729 df-mnf 10730 df-xr 10731 df-ltxr 10732 df-le 10733 df-sub 10924 df-neg 10925 df-div 11350 df-nn 11689 df-2 11751 df-3 11752 df-4 11753 df-5 11754 df-6 11755 df-7 11756 df-8 11757 df-9 11758 df-n0 11949 df-z 12035 df-dec 12152 df-uz 12297 df-q 12403 df-rp 12445 df-xneg 12562 df-xadd 12563 df-xmul 12564 df-ioo 12797 df-ico 12799 df-icc 12800 df-fz 12954 df-fzo 13097 df-seq 13433 df-exp 13494 df-hash 13755 df-cj 14520 df-re 14521 df-im 14522 df-sqrt 14656 df-abs 14657 df-struct 16558 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-plusg 16651 df-mulr 16652 df-starv 16653 df-sca 16654 df-vsca 16655 df-ip 16656 df-tset 16657 df-ple 16658 df-ds 16660 df-unif 16661 df-hom 16662 df-cco 16663 df-rest 16769 df-topn 16770 df-0g 16788 df-gsum 16789 df-topgen 16790 df-pt 16791 df-prds 16794 df-xrs 16848 df-qtop 16853 df-imas 16854 df-xps 16856 df-mre 16930 df-mrc 16931 df-acs 16933 df-mgm 17933 df-sgrp 17982 df-mnd 17993 df-submnd 18038 df-mulg 18307 df-cntz 18529 df-cmn 18990 df-psmet 20173 df-xmet 20174 df-met 20175 df-bl 20176 df-mopn 20177 df-fbas 20178 df-fg 20179 df-cnfld 20182 df-top 21609 df-topon 21626 df-topsp 21648 df-bases 21661 df-cld 21734 df-ntr 21735 df-cls 21736 df-nei 21813 df-lp 21851 df-perf 21852 df-cn 21942 df-cnp 21943 df-haus 22030 df-cmp 22102 df-tx 22277 df-hmeo 22470 df-fil 22561 df-fm 22653 df-flim 22654 df-flf 22655 df-xms 23037 df-ms 23038 df-tms 23039 df-cncf 23594 df-limc 24580 df-dv 24581 |
This theorem is referenced by: ftc2 24758 ftc2nc 35455 |
Copyright terms: Public domain | W3C validator |