MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveq0 Structured version   Visualization version   GIF version

Theorem dveq0 25912
Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
dveq0.a (𝜑𝐴 ∈ ℝ)
dveq0.b (𝜑𝐵 ∈ ℝ)
dveq0.c (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
dveq0.d (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0}))
Assertion
Ref Expression
dveq0 (𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}))

Proof of Theorem dveq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dveq0.c . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
2 cncff 24793 . . . 4 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
43ffnd 6692 . 2 (𝜑𝐹 Fn (𝐴[,]𝐵))
5 fvex 6874 . . 3 (𝐹𝐴) ∈ V
6 fnconstg 6751 . . 3 ((𝐹𝐴) ∈ V → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
75, 6mp1i 13 . 2 (𝜑 → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
85fvconst2 7181 . . . 4 (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥) = (𝐹𝐴))
98adantl 481 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥) = (𝐹𝐴))
103adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
11 dveq0.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1211adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
1312rexrd 11231 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
14 dveq0.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
1615rexrd 11231 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
17 elicc2 13379 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1811, 14, 17syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1918biimpa 476 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
2019simp1d 1142 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2119simp2d 1143 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
2219simp3d 1144 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
2312, 20, 15, 21, 22letrd 11338 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝐵)
24 lbicc2 13432 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2513, 16, 23, 24syl3anc 1373 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ (𝐴[,]𝐵))
2610, 25ffvelcdmd 7060 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) ∈ ℂ)
273ffvelcdmda 7059 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2826, 27subcld 11540 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝐴) − (𝐹𝑥)) ∈ ℂ)
29 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3025, 29jca 511 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
31 dveq0.d . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0}))
3231dmeqd 5872 . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = dom ((𝐴(,)𝐵) × {0}))
33 c0ex 11175 . . . . . . . . . . . 12 0 ∈ V
3433snnz 4743 . . . . . . . . . . 11 {0} ≠ ∅
35 dmxp 5895 . . . . . . . . . . 11 ({0} ≠ ∅ → dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵))
3634, 35ax-mp 5 . . . . . . . . . 10 dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵)
3732, 36eqtrdi 2781 . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
38 0red 11184 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
3931fveq1d 6863 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑦) = (((𝐴(,)𝐵) × {0})‘𝑦))
4033fvconst2 7181 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) → (((𝐴(,)𝐵) × {0})‘𝑦) = 0)
4139, 40sylan9eq 2785 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) = 0)
4241abs00bd 15264 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) = 0)
43 0le0 12294 . . . . . . . . . 10 0 ≤ 0
4442, 43eqbrtrdi 5149 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 0)
4511, 14, 1, 37, 38, 44dvlip 25905 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ (0 · (abs‘(𝐴𝑥))))
4630, 45syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ (0 · (abs‘(𝐴𝑥))))
4712recnd 11209 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ)
4820recnd 11209 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
4947, 48subcld 11540 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴𝑥) ∈ ℂ)
5049abscld 15412 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴𝑥)) ∈ ℝ)
5150recnd 11209 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴𝑥)) ∈ ℂ)
5251mul02d 11379 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (0 · (abs‘(𝐴𝑥))) = 0)
5346, 52breqtrd 5136 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0)
5428absge0d 15420 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))
5528abscld 15412 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ∈ ℝ)
56 0re 11183 . . . . . . 7 0 ∈ ℝ
57 letri3 11266 . . . . . . 7 (((abs‘((𝐹𝐴) − (𝐹𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹𝐴) − (𝐹𝑥))) = 0 ↔ ((abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))))
5855, 56, 57sylancl 586 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹𝐴) − (𝐹𝑥))) = 0 ↔ ((abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))))
5953, 54, 58mpbir2and 713 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) = 0)
6028, 59abs00d 15422 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝐴) − (𝐹𝑥)) = 0)
6126, 27, 60subeq0d 11548 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) = (𝐹𝑥))
629, 61eqtr2d 2766 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥))
634, 7, 62eqfnfvd 7009 1 (𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  Vcvv 3450  c0 4299  {csn 4592   class class class wbr 5110   × cxp 5639  dom cdm 5641   Fn wfn 6509  wf 6510  cfv 6514  (class class class)co 7390  cc 11073  cr 11074  0cc0 11075   · cmul 11080  *cxr 11214  cle 11216  cmin 11412  (,)cioo 13313  [,]cicc 13316  abscabs 15207  cnccncf 24776   D cdv 25771
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-fbas 21268  df-fg 21269  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cld 22913  df-ntr 22914  df-cls 22915  df-nei 22992  df-lp 23030  df-perf 23031  df-cn 23121  df-cnp 23122  df-haus 23209  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-fil 23740  df-fm 23832  df-flim 23833  df-flf 23834  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-limc 25774  df-dv 25775
This theorem is referenced by:  ftc2  25958  ftc2nc  37703
  Copyright terms: Public domain W3C validator