![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dveq0 | Structured version Visualization version GIF version |
Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.) |
Ref | Expression |
---|---|
dveq0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dveq0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dveq0.c | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
dveq0.d | ⊢ (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0})) |
Ref | Expression |
---|---|
dveq0 | ⊢ (𝜑 → 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dveq0.c | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | |
2 | cncff 24932 | . . . 4 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
4 | 3 | ffnd 6737 | . 2 ⊢ (𝜑 → 𝐹 Fn (𝐴[,]𝐵)) |
5 | fvex 6919 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
6 | fnconstg 6796 | . . 3 ⊢ ((𝐹‘𝐴) ∈ V → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) | |
7 | 5, 6 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) |
8 | 5 | fvconst2 7223 | . . . 4 ⊢ (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥) = (𝐹‘𝐴)) |
9 | 8 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥) = (𝐹‘𝐴)) |
10 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
11 | dveq0.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
13 | 12 | rexrd 11308 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*) |
14 | dveq0.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
16 | 15 | rexrd 11308 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
17 | elicc2 13448 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
18 | 11, 14, 17 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
19 | 18 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
20 | 19 | simp1d 1141 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
21 | 19 | simp2d 1142 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) |
22 | 19 | simp3d 1143 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
23 | 12, 20, 15, 21, 22 | letrd 11415 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐵) |
24 | lbicc2 13500 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
25 | 13, 16, 23, 24 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ (𝐴[,]𝐵)) |
26 | 10, 25 | ffvelcdmd 7104 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝐴) ∈ ℂ) |
27 | 3 | ffvelcdmda 7103 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
28 | 26, 27 | subcld 11617 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝐴) − (𝐹‘𝑥)) ∈ ℂ) |
29 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) | |
30 | 25, 29 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) |
31 | dveq0.d | . . . . . . . . . . 11 ⊢ (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0})) | |
32 | 31 | dmeqd 5918 | . . . . . . . . . 10 ⊢ (𝜑 → dom (ℝ D 𝐹) = dom ((𝐴(,)𝐵) × {0})) |
33 | c0ex 11252 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
34 | 33 | snnz 4780 | . . . . . . . . . . 11 ⊢ {0} ≠ ∅ |
35 | dmxp 5941 | . . . . . . . . . . 11 ⊢ ({0} ≠ ∅ → dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵)) | |
36 | 34, 35 | ax-mp 5 | . . . . . . . . . 10 ⊢ dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵) |
37 | 32, 36 | eqtrdi 2790 | . . . . . . . . 9 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
38 | 0red 11261 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℝ) | |
39 | 31 | fveq1d 6908 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑦) = (((𝐴(,)𝐵) × {0})‘𝑦)) |
40 | 33 | fvconst2 7223 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ (𝐴(,)𝐵) → (((𝐴(,)𝐵) × {0})‘𝑦) = 0) |
41 | 39, 40 | sylan9eq 2794 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) = 0) |
42 | 41 | abs00bd 15326 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) = 0) |
43 | 0le0 12364 | . . . . . . . . . 10 ⊢ 0 ≤ 0 | |
44 | 42, 43 | eqbrtrdi 5186 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 0) |
45 | 11, 14, 1, 37, 38, 44 | dvlip 26046 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ (0 · (abs‘(𝐴 − 𝑥)))) |
46 | 30, 45 | syldan 591 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ (0 · (abs‘(𝐴 − 𝑥)))) |
47 | 12 | recnd 11286 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ) |
48 | 20 | recnd 11286 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ) |
49 | 47, 48 | subcld 11617 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 − 𝑥) ∈ ℂ) |
50 | 49 | abscld 15471 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴 − 𝑥)) ∈ ℝ) |
51 | 50 | recnd 11286 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴 − 𝑥)) ∈ ℂ) |
52 | 51 | mul02d 11456 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (0 · (abs‘(𝐴 − 𝑥))) = 0) |
53 | 46, 52 | breqtrd 5173 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0) |
54 | 28 | absge0d 15479 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))) |
55 | 28 | abscld 15471 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ∈ ℝ) |
56 | 0re 11260 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
57 | letri3 11343 | . . . . . . 7 ⊢ (((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0 ↔ ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))))) | |
58 | 55, 56, 57 | sylancl 586 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0 ↔ ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))))) |
59 | 53, 54, 58 | mpbir2and 713 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0) |
60 | 28, 59 | abs00d 15481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝐴) − (𝐹‘𝑥)) = 0) |
61 | 26, 27, 60 | subeq0d 11625 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝐴) = (𝐹‘𝑥)) |
62 | 9, 61 | eqtr2d 2775 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) = (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥)) |
63 | 4, 7, 62 | eqfnfvd 7053 | 1 ⊢ (𝜑 → 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 Vcvv 3477 ∅c0 4338 {csn 4630 class class class wbr 5147 × cxp 5686 dom cdm 5688 Fn wfn 6557 ⟶wf 6558 ‘cfv 6562 (class class class)co 7430 ℂcc 11150 ℝcr 11151 0cc0 11152 · cmul 11157 ℝ*cxr 11291 ≤ cle 11293 − cmin 11489 (,)cioo 13383 [,]cicc 13386 abscabs 15269 –cn→ccncf 24915 D cdv 25912 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-rep 5284 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 ax-pre-sup 11230 ax-addf 11231 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4912 df-int 4951 df-iun 4997 df-iin 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-se 5641 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-isom 6571 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-of 7696 df-om 7887 df-1st 8012 df-2nd 8013 df-supp 8184 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-1o 8504 df-2o 8505 df-er 8743 df-map 8866 df-pm 8867 df-ixp 8936 df-en 8984 df-dom 8985 df-sdom 8986 df-fin 8987 df-fsupp 9399 df-fi 9448 df-sup 9479 df-inf 9480 df-oi 9547 df-card 9976 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-div 11918 df-nn 12264 df-2 12326 df-3 12327 df-4 12328 df-5 12329 df-6 12330 df-7 12331 df-8 12332 df-9 12333 df-n0 12524 df-z 12611 df-dec 12731 df-uz 12876 df-q 12988 df-rp 13032 df-xneg 13151 df-xadd 13152 df-xmul 13153 df-ioo 13387 df-ico 13389 df-icc 13390 df-fz 13544 df-fzo 13691 df-seq 14039 df-exp 14099 df-hash 14366 df-cj 15134 df-re 15135 df-im 15136 df-sqrt 15270 df-abs 15271 df-struct 17180 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17468 df-topn 17469 df-0g 17487 df-gsum 17488 df-topgen 17489 df-pt 17490 df-prds 17493 df-xrs 17548 df-qtop 17553 df-imas 17554 df-xps 17556 df-mre 17630 df-mrc 17631 df-acs 17633 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-submnd 18809 df-mulg 19098 df-cntz 19347 df-cmn 19814 df-psmet 21373 df-xmet 21374 df-met 21375 df-bl 21376 df-mopn 21377 df-fbas 21378 df-fg 21379 df-cnfld 21382 df-top 22915 df-topon 22932 df-topsp 22954 df-bases 22968 df-cld 23042 df-ntr 23043 df-cls 23044 df-nei 23121 df-lp 23159 df-perf 23160 df-cn 23250 df-cnp 23251 df-haus 23338 df-cmp 23410 df-tx 23585 df-hmeo 23778 df-fil 23869 df-fm 23961 df-flim 23962 df-flf 23963 df-xms 24345 df-ms 24346 df-tms 24347 df-cncf 24917 df-limc 25915 df-dv 25916 |
This theorem is referenced by: ftc2 26099 ftc2nc 37688 |
Copyright terms: Public domain | W3C validator |