![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dveq0 | Structured version Visualization version GIF version |
Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.) |
Ref | Expression |
---|---|
dveq0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
dveq0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
dveq0.c | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
dveq0.d | ⊢ (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0})) |
Ref | Expression |
---|---|
dveq0 | ⊢ (𝜑 → 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dveq0.c | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | |
2 | cncff 24938 | . . . 4 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) | |
3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
4 | 3 | ffnd 6748 | . 2 ⊢ (𝜑 → 𝐹 Fn (𝐴[,]𝐵)) |
5 | fvex 6933 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
6 | fnconstg 6809 | . . 3 ⊢ ((𝐹‘𝐴) ∈ V → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) | |
7 | 5, 6 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) |
8 | 5 | fvconst2 7241 | . . . 4 ⊢ (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥) = (𝐹‘𝐴)) |
9 | 8 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥) = (𝐹‘𝐴)) |
10 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
11 | dveq0.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
13 | 12 | rexrd 11340 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*) |
14 | dveq0.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
16 | 15 | rexrd 11340 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
17 | elicc2 13472 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
18 | 11, 14, 17 | syl2anc 583 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
19 | 18 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
20 | 19 | simp1d 1142 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
21 | 19 | simp2d 1143 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) |
22 | 19 | simp3d 1144 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
23 | 12, 20, 15, 21, 22 | letrd 11447 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐵) |
24 | lbicc2 13524 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
25 | 13, 16, 23, 24 | syl3anc 1371 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ (𝐴[,]𝐵)) |
26 | 10, 25 | ffvelcdmd 7119 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝐴) ∈ ℂ) |
27 | 3 | ffvelcdmda 7118 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
28 | 26, 27 | subcld 11647 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝐴) − (𝐹‘𝑥)) ∈ ℂ) |
29 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) | |
30 | 25, 29 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) |
31 | dveq0.d | . . . . . . . . . . 11 ⊢ (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0})) | |
32 | 31 | dmeqd 5930 | . . . . . . . . . 10 ⊢ (𝜑 → dom (ℝ D 𝐹) = dom ((𝐴(,)𝐵) × {0})) |
33 | c0ex 11284 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
34 | 33 | snnz 4801 | . . . . . . . . . . 11 ⊢ {0} ≠ ∅ |
35 | dmxp 5953 | . . . . . . . . . . 11 ⊢ ({0} ≠ ∅ → dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵)) | |
36 | 34, 35 | ax-mp 5 | . . . . . . . . . 10 ⊢ dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵) |
37 | 32, 36 | eqtrdi 2796 | . . . . . . . . 9 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
38 | 0red 11293 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℝ) | |
39 | 31 | fveq1d 6922 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑦) = (((𝐴(,)𝐵) × {0})‘𝑦)) |
40 | 33 | fvconst2 7241 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ (𝐴(,)𝐵) → (((𝐴(,)𝐵) × {0})‘𝑦) = 0) |
41 | 39, 40 | sylan9eq 2800 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) = 0) |
42 | 41 | abs00bd 15340 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) = 0) |
43 | 0le0 12394 | . . . . . . . . . 10 ⊢ 0 ≤ 0 | |
44 | 42, 43 | eqbrtrdi 5205 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 0) |
45 | 11, 14, 1, 37, 38, 44 | dvlip 26052 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ (0 · (abs‘(𝐴 − 𝑥)))) |
46 | 30, 45 | syldan 590 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ (0 · (abs‘(𝐴 − 𝑥)))) |
47 | 12 | recnd 11318 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ) |
48 | 20 | recnd 11318 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ) |
49 | 47, 48 | subcld 11647 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 − 𝑥) ∈ ℂ) |
50 | 49 | abscld 15485 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴 − 𝑥)) ∈ ℝ) |
51 | 50 | recnd 11318 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴 − 𝑥)) ∈ ℂ) |
52 | 51 | mul02d 11488 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (0 · (abs‘(𝐴 − 𝑥))) = 0) |
53 | 46, 52 | breqtrd 5192 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0) |
54 | 28 | absge0d 15493 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))) |
55 | 28 | abscld 15485 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ∈ ℝ) |
56 | 0re 11292 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
57 | letri3 11375 | . . . . . . 7 ⊢ (((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0 ↔ ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))))) | |
58 | 55, 56, 57 | sylancl 585 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0 ↔ ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))))) |
59 | 53, 54, 58 | mpbir2and 712 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0) |
60 | 28, 59 | abs00d 15495 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝐴) − (𝐹‘𝑥)) = 0) |
61 | 26, 27, 60 | subeq0d 11655 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝐴) = (𝐹‘𝑥)) |
62 | 9, 61 | eqtr2d 2781 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) = (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥)) |
63 | 4, 7, 62 | eqfnfvd 7067 | 1 ⊢ (𝜑 → 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 Vcvv 3488 ∅c0 4352 {csn 4648 class class class wbr 5166 × cxp 5698 dom cdm 5700 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 ℝcr 11183 0cc0 11184 · cmul 11189 ℝ*cxr 11323 ≤ cle 11325 − cmin 11520 (,)cioo 13407 [,]cicc 13410 abscabs 15283 –cn→ccncf 24921 D cdv 25918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-fi 9480 df-sup 9511 df-inf 9512 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-q 13014 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-ioo 13411 df-ico 13413 df-icc 13414 df-fz 13568 df-fzo 13712 df-seq 14053 df-exp 14113 df-hash 14380 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-hom 17335 df-cco 17336 df-rest 17482 df-topn 17483 df-0g 17501 df-gsum 17502 df-topgen 17503 df-pt 17504 df-prds 17507 df-xrs 17562 df-qtop 17567 df-imas 17568 df-xps 17570 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-mulg 19108 df-cntz 19357 df-cmn 19824 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-mopn 21383 df-fbas 21384 df-fg 21385 df-cnfld 21388 df-top 22921 df-topon 22938 df-topsp 22960 df-bases 22974 df-cld 23048 df-ntr 23049 df-cls 23050 df-nei 23127 df-lp 23165 df-perf 23166 df-cn 23256 df-cnp 23257 df-haus 23344 df-cmp 23416 df-tx 23591 df-hmeo 23784 df-fil 23875 df-fm 23967 df-flim 23968 df-flf 23969 df-xms 24351 df-ms 24352 df-tms 24353 df-cncf 24923 df-limc 25921 df-dv 25922 |
This theorem is referenced by: ftc2 26105 ftc2nc 37662 |
Copyright terms: Public domain | W3C validator |