| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dveq0 | Structured version Visualization version GIF version | ||
| Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.) |
| Ref | Expression |
|---|---|
| dveq0.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| dveq0.b | ⊢ (𝜑 → 𝐵 ∈ ℝ) |
| dveq0.c | ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| dveq0.d | ⊢ (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0})) |
| Ref | Expression |
|---|---|
| dveq0 | ⊢ (𝜑 → 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dveq0.c | . . . 4 ⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | |
| 2 | cncff 24813 | . . . 4 ⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) | |
| 3 | 1, 2 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 4 | 3 | ffnd 6652 | . 2 ⊢ (𝜑 → 𝐹 Fn (𝐴[,]𝐵)) |
| 5 | fvex 6835 | . . 3 ⊢ (𝐹‘𝐴) ∈ V | |
| 6 | fnconstg 6711 | . . 3 ⊢ ((𝐹‘𝐴) ∈ V → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) | |
| 7 | 5, 6 | mp1i 13 | . 2 ⊢ (𝜑 → ((𝐴[,]𝐵) × {(𝐹‘𝐴)}) Fn (𝐴[,]𝐵)) |
| 8 | 5 | fvconst2 7138 | . . . 4 ⊢ (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥) = (𝐹‘𝐴)) |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥) = (𝐹‘𝐴)) |
| 10 | 3 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 11 | dveq0.a | . . . . . . . 8 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 11 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
| 13 | 12 | rexrd 11162 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*) |
| 14 | dveq0.b | . . . . . . . 8 ⊢ (𝜑 → 𝐵 ∈ ℝ) | |
| 15 | 14 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
| 16 | 15 | rexrd 11162 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*) |
| 17 | elicc2 13311 | . . . . . . . . . 10 ⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) | |
| 18 | 11, 14, 17 | syl2anc 584 | . . . . . . . . 9 ⊢ (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵))) |
| 19 | 18 | biimpa 476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 ≤ 𝑥 ∧ 𝑥 ≤ 𝐵)) |
| 20 | 19 | simp1d 1142 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
| 21 | 19 | simp2d 1143 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) |
| 22 | 19 | simp3d 1144 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
| 23 | 12, 20, 15, 21, 22 | letrd 11270 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝐵) |
| 24 | lbicc2 13364 | . . . . . 6 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 ≤ 𝐵) → 𝐴 ∈ (𝐴[,]𝐵)) | |
| 25 | 13, 16, 23, 24 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ (𝐴[,]𝐵)) |
| 26 | 10, 25 | ffvelcdmd 7018 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝐴) ∈ ℂ) |
| 27 | 3 | ffvelcdmda 7017 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) ∈ ℂ) |
| 28 | 26, 27 | subcld 11472 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝐴) − (𝐹‘𝑥)) ∈ ℂ) |
| 29 | simpr 484 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) | |
| 30 | 25, 29 | jca 511 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) |
| 31 | dveq0.d | . . . . . . . . . . 11 ⊢ (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0})) | |
| 32 | 31 | dmeqd 5844 | . . . . . . . . . 10 ⊢ (𝜑 → dom (ℝ D 𝐹) = dom ((𝐴(,)𝐵) × {0})) |
| 33 | c0ex 11106 | . . . . . . . . . . . 12 ⊢ 0 ∈ V | |
| 34 | 33 | snnz 4726 | . . . . . . . . . . 11 ⊢ {0} ≠ ∅ |
| 35 | dmxp 5868 | . . . . . . . . . . 11 ⊢ ({0} ≠ ∅ → dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵)) | |
| 36 | 34, 35 | ax-mp 5 | . . . . . . . . . 10 ⊢ dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵) |
| 37 | 32, 36 | eqtrdi 2782 | . . . . . . . . 9 ⊢ (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵)) |
| 38 | 0red 11115 | . . . . . . . . 9 ⊢ (𝜑 → 0 ∈ ℝ) | |
| 39 | 31 | fveq1d 6824 | . . . . . . . . . . . 12 ⊢ (𝜑 → ((ℝ D 𝐹)‘𝑦) = (((𝐴(,)𝐵) × {0})‘𝑦)) |
| 40 | 33 | fvconst2 7138 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ (𝐴(,)𝐵) → (((𝐴(,)𝐵) × {0})‘𝑦) = 0) |
| 41 | 39, 40 | sylan9eq 2786 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) = 0) |
| 42 | 41 | abs00bd 15198 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) = 0) |
| 43 | 0le0 12226 | . . . . . . . . . 10 ⊢ 0 ≤ 0 | |
| 44 | 42, 43 | eqbrtrdi 5128 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 0) |
| 45 | 11, 14, 1, 37, 38, 44 | dvlip 25925 | . . . . . . . 8 ⊢ ((𝜑 ∧ (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ (0 · (abs‘(𝐴 − 𝑥)))) |
| 46 | 30, 45 | syldan 591 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ (0 · (abs‘(𝐴 − 𝑥)))) |
| 47 | 12 | recnd 11140 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ) |
| 48 | 20 | recnd 11140 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ) |
| 49 | 47, 48 | subcld 11472 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 − 𝑥) ∈ ℂ) |
| 50 | 49 | abscld 15346 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴 − 𝑥)) ∈ ℝ) |
| 51 | 50 | recnd 11140 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴 − 𝑥)) ∈ ℂ) |
| 52 | 51 | mul02d 11311 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (0 · (abs‘(𝐴 − 𝑥))) = 0) |
| 53 | 46, 52 | breqtrd 5115 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0) |
| 54 | 28 | absge0d 15354 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))) |
| 55 | 28 | abscld 15346 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ∈ ℝ) |
| 56 | 0re 11114 | . . . . . . 7 ⊢ 0 ∈ ℝ | |
| 57 | letri3 11198 | . . . . . . 7 ⊢ (((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0 ↔ ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))))) | |
| 58 | 55, 56, 57 | sylancl 586 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0 ↔ ((abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹‘𝐴) − (𝐹‘𝑥)))))) |
| 59 | 53, 54, 58 | mpbir2and 713 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹‘𝐴) − (𝐹‘𝑥))) = 0) |
| 60 | 28, 59 | abs00d 15356 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹‘𝐴) − (𝐹‘𝑥)) = 0) |
| 61 | 26, 27, 60 | subeq0d 11480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝐴) = (𝐹‘𝑥)) |
| 62 | 9, 61 | eqtr2d 2767 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → (𝐹‘𝑥) = (((𝐴[,]𝐵) × {(𝐹‘𝐴)})‘𝑥)) |
| 63 | 4, 7, 62 | eqfnfvd 6967 | 1 ⊢ (𝜑 → 𝐹 = ((𝐴[,]𝐵) × {(𝐹‘𝐴)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4280 {csn 4573 class class class wbr 5089 × cxp 5612 dom cdm 5614 Fn wfn 6476 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ℂcc 11004 ℝcr 11005 0cc0 11006 · cmul 11011 ℝ*cxr 11145 ≤ cle 11147 − cmin 11344 (,)cioo 13245 [,]cicc 13248 abscabs 15141 –cn→ccncf 24796 D cdv 25791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 ax-addf 11085 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-fi 9295 df-sup 9326 df-inf 9327 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-q 12847 df-rp 12891 df-xneg 13011 df-xadd 13012 df-xmul 13013 df-ioo 13249 df-ico 13251 df-icc 13252 df-fz 13408 df-fzo 13555 df-seq 13909 df-exp 13969 df-hash 14238 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-starv 17176 df-sca 17177 df-vsca 17178 df-ip 17179 df-tset 17180 df-ple 17181 df-ds 17183 df-unif 17184 df-hom 17185 df-cco 17186 df-rest 17326 df-topn 17327 df-0g 17345 df-gsum 17346 df-topgen 17347 df-pt 17348 df-prds 17351 df-xrs 17406 df-qtop 17411 df-imas 17412 df-xps 17414 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-mulg 18981 df-cntz 19229 df-cmn 19694 df-psmet 21283 df-xmet 21284 df-met 21285 df-bl 21286 df-mopn 21287 df-fbas 21288 df-fg 21289 df-cnfld 21292 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22861 df-cld 22934 df-ntr 22935 df-cls 22936 df-nei 23013 df-lp 23051 df-perf 23052 df-cn 23142 df-cnp 23143 df-haus 23230 df-cmp 23302 df-tx 23477 df-hmeo 23670 df-fil 23761 df-fm 23853 df-flim 23854 df-flf 23855 df-xms 24235 df-ms 24236 df-tms 24237 df-cncf 24798 df-limc 25794 df-dv 25795 |
| This theorem is referenced by: ftc2 25978 ftc2nc 37750 |
| Copyright terms: Public domain | W3C validator |