MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveq0 Structured version   Visualization version   GIF version

Theorem dveq0 25364
Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
dveq0.a (𝜑𝐴 ∈ ℝ)
dveq0.b (𝜑𝐵 ∈ ℝ)
dveq0.c (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
dveq0.d (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0}))
Assertion
Ref Expression
dveq0 (𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}))

Proof of Theorem dveq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dveq0.c . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
2 cncff 24256 . . . 4 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
43ffnd 6669 . 2 (𝜑𝐹 Fn (𝐴[,]𝐵))
5 fvex 6855 . . 3 (𝐹𝐴) ∈ V
6 fnconstg 6730 . . 3 ((𝐹𝐴) ∈ V → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
75, 6mp1i 13 . 2 (𝜑 → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
85fvconst2 7153 . . . 4 (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥) = (𝐹𝐴))
98adantl 482 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥) = (𝐹𝐴))
103adantr 481 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
11 dveq0.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1211adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
1312rexrd 11205 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
14 dveq0.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
1514adantr 481 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
1615rexrd 11205 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
17 elicc2 13329 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1811, 14, 17syl2anc 584 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1918biimpa 477 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
2019simp1d 1142 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2119simp2d 1143 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
2219simp3d 1144 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
2312, 20, 15, 21, 22letrd 11312 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝐵)
24 lbicc2 13381 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2513, 16, 23, 24syl3anc 1371 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ (𝐴[,]𝐵))
2610, 25ffvelcdmd 7036 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) ∈ ℂ)
273ffvelcdmda 7035 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2826, 27subcld 11512 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝐴) − (𝐹𝑥)) ∈ ℂ)
29 simpr 485 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3025, 29jca 512 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
31 dveq0.d . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0}))
3231dmeqd 5861 . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = dom ((𝐴(,)𝐵) × {0}))
33 c0ex 11149 . . . . . . . . . . . 12 0 ∈ V
3433snnz 4737 . . . . . . . . . . 11 {0} ≠ ∅
35 dmxp 5884 . . . . . . . . . . 11 ({0} ≠ ∅ → dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵))
3634, 35ax-mp 5 . . . . . . . . . 10 dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵)
3732, 36eqtrdi 2792 . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
38 0red 11158 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
3931fveq1d 6844 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑦) = (((𝐴(,)𝐵) × {0})‘𝑦))
4033fvconst2 7153 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) → (((𝐴(,)𝐵) × {0})‘𝑦) = 0)
4139, 40sylan9eq 2796 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) = 0)
4241abs00bd 15176 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) = 0)
43 0le0 12254 . . . . . . . . . 10 0 ≤ 0
4442, 43eqbrtrdi 5144 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 0)
4511, 14, 1, 37, 38, 44dvlip 25357 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ (0 · (abs‘(𝐴𝑥))))
4630, 45syldan 591 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ (0 · (abs‘(𝐴𝑥))))
4712recnd 11183 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ)
4820recnd 11183 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
4947, 48subcld 11512 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴𝑥) ∈ ℂ)
5049abscld 15321 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴𝑥)) ∈ ℝ)
5150recnd 11183 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴𝑥)) ∈ ℂ)
5251mul02d 11353 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (0 · (abs‘(𝐴𝑥))) = 0)
5346, 52breqtrd 5131 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0)
5428absge0d 15329 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))
5528abscld 15321 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ∈ ℝ)
56 0re 11157 . . . . . . 7 0 ∈ ℝ
57 letri3 11240 . . . . . . 7 (((abs‘((𝐹𝐴) − (𝐹𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹𝐴) − (𝐹𝑥))) = 0 ↔ ((abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))))
5855, 56, 57sylancl 586 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹𝐴) − (𝐹𝑥))) = 0 ↔ ((abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))))
5953, 54, 58mpbir2and 711 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) = 0)
6028, 59abs00d 15331 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝐴) − (𝐹𝑥)) = 0)
6126, 27, 60subeq0d 11520 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) = (𝐹𝑥))
629, 61eqtr2d 2777 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥))
634, 7, 62eqfnfvd 6985 1 (𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  Vcvv 3445  c0 4282  {csn 4586   class class class wbr 5105   × cxp 5631  dom cdm 5633   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051   · cmul 11056  *cxr 11188  cle 11190  cmin 11385  (,)cioo 13264  [,]cicc 13267  abscabs 15119  cnccncf 24239   D cdv 25227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-limc 25230  df-dv 25231
This theorem is referenced by:  ftc2  25408  ftc2nc  36160
  Copyright terms: Public domain W3C validator