MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dveq0 Structured version   Visualization version   GIF version

Theorem dveq0 25853
Description: If a continuous function has zero derivative at all points on the interior of a closed interval, then it must be a constant function. (Contributed by Mario Carneiro, 2-Sep-2014.) (Proof shortened by Mario Carneiro, 3-Mar-2015.)
Hypotheses
Ref Expression
dveq0.a (𝜑𝐴 ∈ ℝ)
dveq0.b (𝜑𝐵 ∈ ℝ)
dveq0.c (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
dveq0.d (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0}))
Assertion
Ref Expression
dveq0 (𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}))

Proof of Theorem dveq0
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dveq0.c . . . 4 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ))
2 cncff 24733 . . . 4 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
31, 2syl 17 . . 3 (𝜑𝐹:(𝐴[,]𝐵)⟶ℂ)
43ffnd 6718 . 2 (𝜑𝐹 Fn (𝐴[,]𝐵))
5 fvex 6904 . . 3 (𝐹𝐴) ∈ V
6 fnconstg 6779 . . 3 ((𝐹𝐴) ∈ V → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
75, 6mp1i 13 . 2 (𝜑 → ((𝐴[,]𝐵) × {(𝐹𝐴)}) Fn (𝐴[,]𝐵))
85fvconst2 7207 . . . 4 (𝑥 ∈ (𝐴[,]𝐵) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥) = (𝐹𝐴))
98adantl 481 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥) = (𝐹𝐴))
103adantr 480 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
11 dveq0.a . . . . . . . 8 (𝜑𝐴 ∈ ℝ)
1211adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ)
1312rexrd 11271 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ*)
14 dveq0.b . . . . . . . 8 (𝜑𝐵 ∈ ℝ)
1514adantr 480 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ)
1615rexrd 11271 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ*)
17 elicc2 13396 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1811, 14, 17syl2anc 583 . . . . . . . . 9 (𝜑 → (𝑥 ∈ (𝐴[,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵)))
1918biimpa 476 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴𝑥𝑥𝐵))
2019simp1d 1141 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ)
2119simp2d 1142 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝑥)
2219simp3d 1143 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥𝐵)
2312, 20, 15, 21, 22letrd 11378 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴𝐵)
24 lbicc2 13448 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → 𝐴 ∈ (𝐴[,]𝐵))
2513, 16, 23, 24syl3anc 1370 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ (𝐴[,]𝐵))
2610, 25ffvelcdmd 7087 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) ∈ ℂ)
273ffvelcdmda 7086 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) ∈ ℂ)
2826, 27subcld 11578 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝐴) − (𝐹𝑥)) ∈ ℂ)
29 simpr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵))
3025, 29jca 511 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵)))
31 dveq0.d . . . . . . . . . . 11 (𝜑 → (ℝ D 𝐹) = ((𝐴(,)𝐵) × {0}))
3231dmeqd 5905 . . . . . . . . . 10 (𝜑 → dom (ℝ D 𝐹) = dom ((𝐴(,)𝐵) × {0}))
33 c0ex 11215 . . . . . . . . . . . 12 0 ∈ V
3433snnz 4780 . . . . . . . . . . 11 {0} ≠ ∅
35 dmxp 5928 . . . . . . . . . . 11 ({0} ≠ ∅ → dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵))
3634, 35ax-mp 5 . . . . . . . . . 10 dom ((𝐴(,)𝐵) × {0}) = (𝐴(,)𝐵)
3732, 36eqtrdi 2787 . . . . . . . . 9 (𝜑 → dom (ℝ D 𝐹) = (𝐴(,)𝐵))
38 0red 11224 . . . . . . . . 9 (𝜑 → 0 ∈ ℝ)
3931fveq1d 6893 . . . . . . . . . . . 12 (𝜑 → ((ℝ D 𝐹)‘𝑦) = (((𝐴(,)𝐵) × {0})‘𝑦))
4033fvconst2 7207 . . . . . . . . . . . 12 (𝑦 ∈ (𝐴(,)𝐵) → (((𝐴(,)𝐵) × {0})‘𝑦) = 0)
4139, 40sylan9eq 2791 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((ℝ D 𝐹)‘𝑦) = 0)
4241abs00bd 15245 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) = 0)
43 0le0 12320 . . . . . . . . . 10 0 ≤ 0
4442, 43eqbrtrdi 5187 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((ℝ D 𝐹)‘𝑦)) ≤ 0)
4511, 14, 1, 37, 38, 44dvlip 25846 . . . . . . . 8 ((𝜑 ∧ (𝐴 ∈ (𝐴[,]𝐵) ∧ 𝑥 ∈ (𝐴[,]𝐵))) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ (0 · (abs‘(𝐴𝑥))))
4630, 45syldan 590 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ (0 · (abs‘(𝐴𝑥))))
4712recnd 11249 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℂ)
4820recnd 11249 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℂ)
4947, 48subcld 11578 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐴𝑥) ∈ ℂ)
5049abscld 15390 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴𝑥)) ∈ ℝ)
5150recnd 11249 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘(𝐴𝑥)) ∈ ℂ)
5251mul02d 11419 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (0 · (abs‘(𝐴𝑥))) = 0)
5346, 52breqtrd 5174 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0)
5428absge0d 15398 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))
5528abscld 15390 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) ∈ ℝ)
56 0re 11223 . . . . . . 7 0 ∈ ℝ
57 letri3 11306 . . . . . . 7 (((abs‘((𝐹𝐴) − (𝐹𝑥))) ∈ ℝ ∧ 0 ∈ ℝ) → ((abs‘((𝐹𝐴) − (𝐹𝑥))) = 0 ↔ ((abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))))
5855, 56, 57sylancl 585 . . . . . 6 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((abs‘((𝐹𝐴) − (𝐹𝑥))) = 0 ↔ ((abs‘((𝐹𝐴) − (𝐹𝑥))) ≤ 0 ∧ 0 ≤ (abs‘((𝐹𝐴) − (𝐹𝑥))))))
5953, 54, 58mpbir2and 710 . . . . 5 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (abs‘((𝐹𝐴) − (𝐹𝑥))) = 0)
6028, 59abs00d 15400 . . . 4 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → ((𝐹𝐴) − (𝐹𝑥)) = 0)
6126, 27, 60subeq0d 11586 . . 3 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝐴) = (𝐹𝑥))
629, 61eqtr2d 2772 . 2 ((𝜑𝑥 ∈ (𝐴[,]𝐵)) → (𝐹𝑥) = (((𝐴[,]𝐵) × {(𝐹𝐴)})‘𝑥))
634, 7, 62eqfnfvd 7035 1 (𝜑𝐹 = ((𝐴[,]𝐵) × {(𝐹𝐴)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105  wne 2939  Vcvv 3473  c0 4322  {csn 4628   class class class wbr 5148   × cxp 5674  dom cdm 5676   Fn wfn 6538  wf 6539  cfv 6543  (class class class)co 7412  cc 11114  cr 11115  0cc0 11116   · cmul 11121  *cxr 11254  cle 11256  cmin 11451  (,)cioo 13331  [,]cicc 13334  abscabs 15188  cnccncf 24716   D cdv 25712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194  ax-addf 11195
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-of 7674  df-om 7860  df-1st 7979  df-2nd 7980  df-supp 8152  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-map 8828  df-pm 8829  df-ixp 8898  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-fsupp 9368  df-fi 9412  df-sup 9443  df-inf 9444  df-oi 9511  df-card 9940  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-5 12285  df-6 12286  df-7 12287  df-8 12288  df-9 12289  df-n0 12480  df-z 12566  df-dec 12685  df-uz 12830  df-q 12940  df-rp 12982  df-xneg 13099  df-xadd 13100  df-xmul 13101  df-ioo 13335  df-ico 13337  df-icc 13338  df-fz 13492  df-fzo 13635  df-seq 13974  df-exp 14035  df-hash 14298  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-struct 17087  df-sets 17104  df-slot 17122  df-ndx 17134  df-base 17152  df-ress 17181  df-plusg 17217  df-mulr 17218  df-starv 17219  df-sca 17220  df-vsca 17221  df-ip 17222  df-tset 17223  df-ple 17224  df-ds 17226  df-unif 17227  df-hom 17228  df-cco 17229  df-rest 17375  df-topn 17376  df-0g 17394  df-gsum 17395  df-topgen 17396  df-pt 17397  df-prds 17400  df-xrs 17455  df-qtop 17460  df-imas 17461  df-xps 17463  df-mre 17537  df-mrc 17538  df-acs 17540  df-mgm 18571  df-sgrp 18650  df-mnd 18666  df-submnd 18712  df-mulg 18994  df-cntz 19229  df-cmn 19698  df-psmet 21225  df-xmet 21226  df-met 21227  df-bl 21228  df-mopn 21229  df-fbas 21230  df-fg 21231  df-cnfld 21234  df-top 22716  df-topon 22733  df-topsp 22755  df-bases 22769  df-cld 22843  df-ntr 22844  df-cls 22845  df-nei 22922  df-lp 22960  df-perf 22961  df-cn 23051  df-cnp 23052  df-haus 23139  df-cmp 23211  df-tx 23386  df-hmeo 23579  df-fil 23670  df-fm 23762  df-flim 23763  df-flf 23764  df-xms 24146  df-ms 24147  df-tms 24148  df-cncf 24718  df-limc 25715  df-dv 25716
This theorem is referenced by:  ftc2  25899  ftc2nc  37034
  Copyright terms: Public domain W3C validator