|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > negscut2 | Structured version Visualization version GIF version | ||
| Description: The cut that defines surreal negation is legitimate. (Contributed by Scott Fenton, 3-Feb-2025.) | 
| Ref | Expression | 
|---|---|
| negscut2 | ⊢ (𝐴 ∈ No → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negscut 28072 | . . 3 ⊢ (𝐴 ∈ No → (( -us ‘𝐴) ∈ No ∧ ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)))) | |
| 2 | 1 | simp2d 1143 | . 2 ⊢ (𝐴 ∈ No → ( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)}) | 
| 3 | 1 | simp3d 1144 | . 2 ⊢ (𝐴 ∈ No → {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴))) | 
| 4 | fvex 6918 | . . . 4 ⊢ ( -us ‘𝐴) ∈ V | |
| 5 | 4 | snnz 4775 | . . 3 ⊢ {( -us ‘𝐴)} ≠ ∅ | 
| 6 | sslttr 27853 | . . 3 ⊢ ((( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴)) ∧ {( -us ‘𝐴)} ≠ ∅) → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) | |
| 7 | 5, 6 | mp3an3 1451 | . 2 ⊢ ((( -us “ ( R ‘𝐴)) <<s {( -us ‘𝐴)} ∧ {( -us ‘𝐴)} <<s ( -us “ ( L ‘𝐴))) → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) | 
| 8 | 2, 3, 7 | syl2anc 584 | 1 ⊢ (𝐴 ∈ No → ( -us “ ( R ‘𝐴)) <<s ( -us “ ( L ‘𝐴))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2939 ∅c0 4332 {csn 4625 class class class wbr 5142 “ cima 5687 ‘cfv 6560 No csur 27685 <<s csslt 27826 L cleft 27885 R cright 27886 -us cnegs 28052 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-se 5637 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-1o 8507 df-2o 8508 df-no 27688 df-slt 27689 df-bday 27690 df-sslt 27827 df-scut 27829 df-0s 27870 df-made 27887 df-old 27888 df-left 27890 df-right 27891 df-norec 27972 df-negs 28054 | 
| This theorem is referenced by: negsid 28074 negsunif 28088 negsbdaylem 28089 | 
| Copyright terms: Public domain | W3C validator |