![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0subgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 0subg 19181 as of 31-Jan-2025. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0subg.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
0subgOLD | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 0subg.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | 1, 2 | grpidcl 18995 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
4 | 3 | snssd 4813 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ⊆ (Base‘𝐺)) |
5 | 2 | fvexi 6920 | . . . 4 ⊢ 0 ∈ V |
6 | 5 | snnz 4780 | . . 3 ⊢ { 0 } ≠ ∅ |
7 | 6 | a1i 11 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ≠ ∅) |
8 | eqid 2734 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
9 | 1, 8, 2 | grplid 18997 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
10 | 3, 9 | mpdan 687 | . . . 4 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) = 0 ) |
11 | ovex 7463 | . . . . 5 ⊢ ( 0 (+g‘𝐺) 0 ) ∈ V | |
12 | 11 | elsn 4645 | . . . 4 ⊢ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 ) |
13 | 10, 12 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
14 | eqid 2734 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
15 | 2, 14 | grpinvid 19029 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
16 | fvex 6919 | . . . . 5 ⊢ ((invg‘𝐺)‘ 0 ) ∈ V | |
17 | 16 | elsn 4645 | . . . 4 ⊢ (((invg‘𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) = 0 ) |
18 | 15, 17 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) ∈ { 0 }) |
19 | oveq1 7437 | . . . . . . . 8 ⊢ (𝑎 = 0 → (𝑎(+g‘𝐺)𝑏) = ( 0 (+g‘𝐺)𝑏)) | |
20 | 19 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑎 = 0 → ((𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺)𝑏) ∈ { 0 })) |
21 | 20 | ralbidv 3175 | . . . . . 6 ⊢ (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ∀𝑏 ∈ { 0 } ( 0 (+g‘𝐺)𝑏) ∈ { 0 })) |
22 | oveq2 7438 | . . . . . . . 8 ⊢ (𝑏 = 0 → ( 0 (+g‘𝐺)𝑏) = ( 0 (+g‘𝐺) 0 )) | |
23 | 22 | eleq1d 2823 | . . . . . . 7 ⊢ (𝑏 = 0 → (( 0 (+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
24 | 5, 23 | ralsn 4685 | . . . . . 6 ⊢ (∀𝑏 ∈ { 0 } ( 0 (+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
25 | 21, 24 | bitrdi 287 | . . . . 5 ⊢ (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
26 | fveq2 6906 | . . . . . 6 ⊢ (𝑎 = 0 → ((invg‘𝐺)‘𝑎) = ((invg‘𝐺)‘ 0 )) | |
27 | 26 | eleq1d 2823 | . . . . 5 ⊢ (𝑎 = 0 → (((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
28 | 25, 27 | anbi12d 632 | . . . 4 ⊢ (𝑎 = 0 → ((∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ∧ ((invg‘𝐺)‘ 0 ) ∈ { 0 }))) |
29 | 5, 28 | ralsn 4685 | . . 3 ⊢ (∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ∧ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
30 | 13, 18, 29 | sylanbrc 583 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 })) |
31 | 1, 8, 14 | issubg2 19171 | . 2 ⊢ (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ { 0 } ≠ ∅ ∧ ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 })))) |
32 | 4, 7, 30, 31 | mpbir3and 1341 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ≠ wne 2937 ∀wral 3058 ⊆ wss 3962 ∅c0 4338 {csn 4630 ‘cfv 6562 (class class class)co 7430 Basecbs 17244 +gcplusg 17297 0gc0g 17485 Grpcgrp 18963 invgcminusg 18964 SubGrpcsubg 19150 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pow 5370 ax-pr 5437 ax-un 7753 ax-cnex 11208 ax-resscn 11209 ax-1cn 11210 ax-icn 11211 ax-addcl 11212 ax-addrcl 11213 ax-mulcl 11214 ax-mulrcl 11215 ax-mulcom 11216 ax-addass 11217 ax-mulass 11218 ax-distr 11219 ax-i2m1 11220 ax-1ne0 11221 ax-1rid 11222 ax-rnegex 11223 ax-rrecex 11224 ax-cnre 11225 ax-pre-lttri 11226 ax-pre-lttrn 11227 ax-pre-ltadd 11228 ax-pre-mulgt0 11229 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3377 df-reu 3378 df-rab 3433 df-v 3479 df-sbc 3791 df-csb 3908 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-pss 3982 df-nul 4339 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-iun 4997 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5640 df-we 5642 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-pred 6322 df-ord 6388 df-on 6389 df-lim 6390 df-suc 6391 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-f1 6567 df-fo 6568 df-f1o 6569 df-fv 6570 df-riota 7387 df-ov 7433 df-oprab 7434 df-mpo 7435 df-om 7887 df-2nd 8013 df-frecs 8304 df-wrecs 8335 df-recs 8409 df-rdg 8448 df-er 8743 df-en 8984 df-dom 8985 df-sdom 8986 df-pnf 11294 df-mnf 11295 df-xr 11296 df-ltxr 11297 df-le 11298 df-sub 11491 df-neg 11492 df-nn 12264 df-2 12326 df-sets 17197 df-slot 17215 df-ndx 17227 df-base 17245 df-ress 17274 df-plusg 17310 df-0g 17487 df-mgm 18665 df-sgrp 18744 df-mnd 18760 df-grp 18966 df-minusg 18967 df-subg 19153 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |