| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0subgOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of 0subg 19064 as of 31-Jan-2025. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0subg.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| 0subgOLD | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 0subg.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18878 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
| 4 | 3 | snssd 4761 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ⊆ (Base‘𝐺)) |
| 5 | 2 | fvexi 6836 | . . . 4 ⊢ 0 ∈ V |
| 6 | 5 | snnz 4729 | . . 3 ⊢ { 0 } ≠ ∅ |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ≠ ∅) |
| 8 | eqid 2731 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 9 | 1, 8, 2 | grplid 18880 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 10 | 3, 9 | mpdan 687 | . . . 4 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 11 | ovex 7379 | . . . . 5 ⊢ ( 0 (+g‘𝐺) 0 ) ∈ V | |
| 12 | 11 | elsn 4591 | . . . 4 ⊢ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 13 | 10, 12 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
| 14 | eqid 2731 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 15 | 2, 14 | grpinvid 18912 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 16 | fvex 6835 | . . . . 5 ⊢ ((invg‘𝐺)‘ 0 ) ∈ V | |
| 17 | 16 | elsn 4591 | . . . 4 ⊢ (((invg‘𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) = 0 ) |
| 18 | 15, 17 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) ∈ { 0 }) |
| 19 | oveq1 7353 | . . . . . . . 8 ⊢ (𝑎 = 0 → (𝑎(+g‘𝐺)𝑏) = ( 0 (+g‘𝐺)𝑏)) | |
| 20 | 19 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑎 = 0 → ((𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺)𝑏) ∈ { 0 })) |
| 21 | 20 | ralbidv 3155 | . . . . . 6 ⊢ (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ∀𝑏 ∈ { 0 } ( 0 (+g‘𝐺)𝑏) ∈ { 0 })) |
| 22 | oveq2 7354 | . . . . . . . 8 ⊢ (𝑏 = 0 → ( 0 (+g‘𝐺)𝑏) = ( 0 (+g‘𝐺) 0 )) | |
| 23 | 22 | eleq1d 2816 | . . . . . . 7 ⊢ (𝑏 = 0 → (( 0 (+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
| 24 | 5, 23 | ralsn 4634 | . . . . . 6 ⊢ (∀𝑏 ∈ { 0 } ( 0 (+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
| 25 | 21, 24 | bitrdi 287 | . . . . 5 ⊢ (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
| 26 | fveq2 6822 | . . . . . 6 ⊢ (𝑎 = 0 → ((invg‘𝐺)‘𝑎) = ((invg‘𝐺)‘ 0 )) | |
| 27 | 26 | eleq1d 2816 | . . . . 5 ⊢ (𝑎 = 0 → (((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
| 28 | 25, 27 | anbi12d 632 | . . . 4 ⊢ (𝑎 = 0 → ((∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ∧ ((invg‘𝐺)‘ 0 ) ∈ { 0 }))) |
| 29 | 5, 28 | ralsn 4634 | . . 3 ⊢ (∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ∧ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
| 30 | 13, 18, 29 | sylanbrc 583 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 })) |
| 31 | 1, 8, 14 | issubg2 19054 | . 2 ⊢ (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ { 0 } ≠ ∅ ∧ ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 })))) |
| 32 | 4, 7, 30, 31 | mpbir3and 1343 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3902 ∅c0 4283 {csn 4576 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 0gc0g 17343 Grpcgrp 18846 invgcminusg 18847 SubGrpcsubg 19033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-subg 19036 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |