| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0subgOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of 0subg 19134 as of 31-Jan-2025. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| 0subg.z | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| 0subgOLD | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2735 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 2 | 0subg.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
| 3 | 1, 2 | grpidcl 18948 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
| 4 | 3 | snssd 4785 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ⊆ (Base‘𝐺)) |
| 5 | 2 | fvexi 6890 | . . . 4 ⊢ 0 ∈ V |
| 6 | 5 | snnz 4752 | . . 3 ⊢ { 0 } ≠ ∅ |
| 7 | 6 | a1i 11 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ≠ ∅) |
| 8 | eqid 2735 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 9 | 1, 8, 2 | grplid 18950 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 10 | 3, 9 | mpdan 687 | . . . 4 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 11 | ovex 7438 | . . . . 5 ⊢ ( 0 (+g‘𝐺) 0 ) ∈ V | |
| 12 | 11 | elsn 4616 | . . . 4 ⊢ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 13 | 10, 12 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
| 14 | eqid 2735 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 15 | 2, 14 | grpinvid 18982 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
| 16 | fvex 6889 | . . . . 5 ⊢ ((invg‘𝐺)‘ 0 ) ∈ V | |
| 17 | 16 | elsn 4616 | . . . 4 ⊢ (((invg‘𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) = 0 ) |
| 18 | 15, 17 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) ∈ { 0 }) |
| 19 | oveq1 7412 | . . . . . . . 8 ⊢ (𝑎 = 0 → (𝑎(+g‘𝐺)𝑏) = ( 0 (+g‘𝐺)𝑏)) | |
| 20 | 19 | eleq1d 2819 | . . . . . . 7 ⊢ (𝑎 = 0 → ((𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺)𝑏) ∈ { 0 })) |
| 21 | 20 | ralbidv 3163 | . . . . . 6 ⊢ (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ∀𝑏 ∈ { 0 } ( 0 (+g‘𝐺)𝑏) ∈ { 0 })) |
| 22 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑏 = 0 → ( 0 (+g‘𝐺)𝑏) = ( 0 (+g‘𝐺) 0 )) | |
| 23 | 22 | eleq1d 2819 | . . . . . . 7 ⊢ (𝑏 = 0 → (( 0 (+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
| 24 | 5, 23 | ralsn 4657 | . . . . . 6 ⊢ (∀𝑏 ∈ { 0 } ( 0 (+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
| 25 | 21, 24 | bitrdi 287 | . . . . 5 ⊢ (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
| 26 | fveq2 6876 | . . . . . 6 ⊢ (𝑎 = 0 → ((invg‘𝐺)‘𝑎) = ((invg‘𝐺)‘ 0 )) | |
| 27 | 26 | eleq1d 2819 | . . . . 5 ⊢ (𝑎 = 0 → (((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
| 28 | 25, 27 | anbi12d 632 | . . . 4 ⊢ (𝑎 = 0 → ((∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ∧ ((invg‘𝐺)‘ 0 ) ∈ { 0 }))) |
| 29 | 5, 28 | ralsn 4657 | . . 3 ⊢ (∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ∧ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
| 30 | 13, 18, 29 | sylanbrc 583 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 })) |
| 31 | 1, 8, 14 | issubg2 19124 | . 2 ⊢ (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ { 0 } ≠ ∅ ∧ ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 })))) |
| 32 | 4, 7, 30, 31 | mpbir3and 1343 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 ∀wral 3051 ⊆ wss 3926 ∅c0 4308 {csn 4601 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 +gcplusg 17271 0gc0g 17453 Grpcgrp 18916 invgcminusg 18917 SubGrpcsubg 19103 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-ress 17252 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-grp 18919 df-minusg 18920 df-subg 19106 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |