MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subgOLD Structured version   Visualization version   GIF version

Theorem 0subgOLD 19192
Description: Obsolete version of 0subg 19191 as of 31-Jan-2025. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
0subg.z 0 = (0g𝐺)
Assertion
Ref Expression
0subgOLD (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))

Proof of Theorem 0subgOLD
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 0subg.z . . . 4 0 = (0g𝐺)
31, 2grpidcl 19005 . . 3 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
43snssd 4834 . 2 (𝐺 ∈ Grp → { 0 } ⊆ (Base‘𝐺))
52fvexi 6934 . . . 4 0 ∈ V
65snnz 4801 . . 3 { 0 } ≠ ∅
76a1i 11 . 2 (𝐺 ∈ Grp → { 0 } ≠ ∅)
8 eqid 2740 . . . . . 6 (+g𝐺) = (+g𝐺)
91, 8, 2grplid 19007 . . . . 5 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
103, 9mpdan 686 . . . 4 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) = 0 )
11 ovex 7481 . . . . 5 ( 0 (+g𝐺) 0 ) ∈ V
1211elsn 4663 . . . 4 (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 )
1310, 12sylibr 234 . . 3 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) ∈ { 0 })
14 eqid 2740 . . . . 5 (invg𝐺) = (invg𝐺)
152, 14grpinvid 19039 . . . 4 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
16 fvex 6933 . . . . 5 ((invg𝐺)‘ 0 ) ∈ V
1716elsn 4663 . . . 4 (((invg𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg𝐺)‘ 0 ) = 0 )
1815, 17sylibr 234 . . 3 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) ∈ { 0 })
19 oveq1 7455 . . . . . . . 8 (𝑎 = 0 → (𝑎(+g𝐺)𝑏) = ( 0 (+g𝐺)𝑏))
2019eleq1d 2829 . . . . . . 7 (𝑎 = 0 → ((𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺)𝑏) ∈ { 0 }))
2120ralbidv 3184 . . . . . 6 (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ∀𝑏 ∈ { 0 } ( 0 (+g𝐺)𝑏) ∈ { 0 }))
22 oveq2 7456 . . . . . . . 8 (𝑏 = 0 → ( 0 (+g𝐺)𝑏) = ( 0 (+g𝐺) 0 ))
2322eleq1d 2829 . . . . . . 7 (𝑏 = 0 → (( 0 (+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
245, 23ralsn 4705 . . . . . 6 (∀𝑏 ∈ { 0 } ( 0 (+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 })
2521, 24bitrdi 287 . . . . 5 (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
26 fveq2 6920 . . . . . 6 (𝑎 = 0 → ((invg𝐺)‘𝑎) = ((invg𝐺)‘ 0 ))
2726eleq1d 2829 . . . . 5 (𝑎 = 0 → (((invg𝐺)‘𝑎) ∈ { 0 } ↔ ((invg𝐺)‘ 0 ) ∈ { 0 }))
2825, 27anbi12d 631 . . . 4 (𝑎 = 0 → ((∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g𝐺) 0 ) ∈ { 0 } ∧ ((invg𝐺)‘ 0 ) ∈ { 0 })))
295, 28ralsn 4705 . . 3 (∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g𝐺) 0 ) ∈ { 0 } ∧ ((invg𝐺)‘ 0 ) ∈ { 0 }))
3013, 18, 29sylanbrc 582 . 2 (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }))
311, 8, 14issubg2 19181 . 2 (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ { 0 } ≠ ∅ ∧ ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }))))
324, 7, 30, 31mpbir3and 1342 1 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wss 3976  c0 4352  {csn 4648  cfv 6573  (class class class)co 7448  Basecbs 17258  +gcplusg 17311  0gc0g 17499  Grpcgrp 18973  invgcminusg 18974  SubGrpcsubg 19160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-subg 19163
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator