MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0subgOLD Structured version   Visualization version   GIF version

Theorem 0subgOLD 19025
Description: Obsolete version of 0subg 19024 as of 31-Jan-2025. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
0subg.z 0 = (0g𝐺)
Assertion
Ref Expression
0subgOLD (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))

Proof of Theorem 0subgOLD
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2733 . . . 4 (Base‘𝐺) = (Base‘𝐺)
2 0subg.z . . . 4 0 = (0g𝐺)
31, 2grpidcl 18845 . . 3 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
43snssd 4810 . 2 (𝐺 ∈ Grp → { 0 } ⊆ (Base‘𝐺))
52fvexi 6901 . . . 4 0 ∈ V
65snnz 4778 . . 3 { 0 } ≠ ∅
76a1i 11 . 2 (𝐺 ∈ Grp → { 0 } ≠ ∅)
8 eqid 2733 . . . . . 6 (+g𝐺) = (+g𝐺)
91, 8, 2grplid 18847 . . . . 5 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
103, 9mpdan 686 . . . 4 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) = 0 )
11 ovex 7436 . . . . 5 ( 0 (+g𝐺) 0 ) ∈ V
1211elsn 4641 . . . 4 (( 0 (+g𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) = 0 )
1310, 12sylibr 233 . . 3 (𝐺 ∈ Grp → ( 0 (+g𝐺) 0 ) ∈ { 0 })
14 eqid 2733 . . . . 5 (invg𝐺) = (invg𝐺)
152, 14grpinvid 18879 . . . 4 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) = 0 )
16 fvex 6900 . . . . 5 ((invg𝐺)‘ 0 ) ∈ V
1716elsn 4641 . . . 4 (((invg𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg𝐺)‘ 0 ) = 0 )
1815, 17sylibr 233 . . 3 (𝐺 ∈ Grp → ((invg𝐺)‘ 0 ) ∈ { 0 })
19 oveq1 7410 . . . . . . . 8 (𝑎 = 0 → (𝑎(+g𝐺)𝑏) = ( 0 (+g𝐺)𝑏))
2019eleq1d 2819 . . . . . . 7 (𝑎 = 0 → ((𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺)𝑏) ∈ { 0 }))
2120ralbidv 3178 . . . . . 6 (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ∀𝑏 ∈ { 0 } ( 0 (+g𝐺)𝑏) ∈ { 0 }))
22 oveq2 7411 . . . . . . . 8 (𝑏 = 0 → ( 0 (+g𝐺)𝑏) = ( 0 (+g𝐺) 0 ))
2322eleq1d 2819 . . . . . . 7 (𝑏 = 0 → (( 0 (+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
245, 23ralsn 4683 . . . . . 6 (∀𝑏 ∈ { 0 } ( 0 (+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 })
2521, 24bitrdi 287 . . . . 5 (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g𝐺) 0 ) ∈ { 0 }))
26 fveq2 6887 . . . . . 6 (𝑎 = 0 → ((invg𝐺)‘𝑎) = ((invg𝐺)‘ 0 ))
2726eleq1d 2819 . . . . 5 (𝑎 = 0 → (((invg𝐺)‘𝑎) ∈ { 0 } ↔ ((invg𝐺)‘ 0 ) ∈ { 0 }))
2825, 27anbi12d 632 . . . 4 (𝑎 = 0 → ((∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g𝐺) 0 ) ∈ { 0 } ∧ ((invg𝐺)‘ 0 ) ∈ { 0 })))
295, 28ralsn 4683 . . 3 (∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g𝐺) 0 ) ∈ { 0 } ∧ ((invg𝐺)‘ 0 ) ∈ { 0 }))
3013, 18, 29sylanbrc 584 . 2 (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }))
311, 8, 14issubg2 19014 . 2 (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ { 0 } ≠ ∅ ∧ ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g𝐺)𝑏) ∈ { 0 } ∧ ((invg𝐺)‘𝑎) ∈ { 0 }))))
324, 7, 30, 31mpbir3and 1343 1 (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wne 2941  wral 3062  wss 3946  c0 4320  {csn 4626  cfv 6539  (class class class)co 7403  Basecbs 17139  +gcplusg 17192  0gc0g 17380  Grpcgrp 18814  invgcminusg 18815  SubGrpcsubg 18993
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5297  ax-nul 5304  ax-pow 5361  ax-pr 5425  ax-un 7719  ax-cnex 11161  ax-resscn 11162  ax-1cn 11163  ax-icn 11164  ax-addcl 11165  ax-addrcl 11166  ax-mulcl 11167  ax-mulrcl 11168  ax-mulcom 11169  ax-addass 11170  ax-mulass 11171  ax-distr 11172  ax-i2m1 11173  ax-1ne0 11174  ax-1rid 11175  ax-rnegex 11176  ax-rrecex 11177  ax-cnre 11178  ax-pre-lttri 11179  ax-pre-lttrn 11180  ax-pre-ltadd 11181  ax-pre-mulgt0 11182
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3965  df-nul 4321  df-if 4527  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4907  df-iun 4997  df-br 5147  df-opab 5209  df-mpt 5230  df-tr 5264  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6296  df-ord 6363  df-on 6364  df-lim 6365  df-suc 6366  df-iota 6491  df-fun 6541  df-fn 6542  df-f 6543  df-f1 6544  df-fo 6545  df-f1o 6546  df-fv 6547  df-riota 7359  df-ov 7406  df-oprab 7407  df-mpo 7408  df-om 7850  df-2nd 7970  df-frecs 8260  df-wrecs 8291  df-recs 8365  df-rdg 8404  df-er 8698  df-en 8935  df-dom 8936  df-sdom 8937  df-pnf 11245  df-mnf 11246  df-xr 11247  df-ltxr 11248  df-le 11249  df-sub 11441  df-neg 11442  df-nn 12208  df-2 12270  df-sets 17092  df-slot 17110  df-ndx 17122  df-base 17140  df-ress 17169  df-plusg 17205  df-0g 17382  df-mgm 18556  df-sgrp 18605  df-mnd 18621  df-grp 18817  df-minusg 18818  df-subg 18996
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator