![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0subgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of 0subg 19191 as of 31-Jan-2025. (Contributed by Stefan O'Rear, 10-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
0subg.z | ⊢ 0 = (0g‘𝐺) |
Ref | Expression |
---|---|
0subgOLD | ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
2 | 0subg.z | . . . 4 ⊢ 0 = (0g‘𝐺) | |
3 | 1, 2 | grpidcl 19005 | . . 3 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
4 | 3 | snssd 4834 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ⊆ (Base‘𝐺)) |
5 | 2 | fvexi 6934 | . . . 4 ⊢ 0 ∈ V |
6 | 5 | snnz 4801 | . . 3 ⊢ { 0 } ≠ ∅ |
7 | 6 | a1i 11 | . 2 ⊢ (𝐺 ∈ Grp → { 0 } ≠ ∅) |
8 | eqid 2740 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
9 | 1, 8, 2 | grplid 19007 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
10 | 3, 9 | mpdan 686 | . . . 4 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) = 0 ) |
11 | ovex 7481 | . . . . 5 ⊢ ( 0 (+g‘𝐺) 0 ) ∈ V | |
12 | 11 | elsn 4663 | . . . 4 ⊢ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) = 0 ) |
13 | 10, 12 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ Grp → ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
14 | eqid 2740 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
15 | 2, 14 | grpinvid 19039 | . . . 4 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) = 0 ) |
16 | fvex 6933 | . . . . 5 ⊢ ((invg‘𝐺)‘ 0 ) ∈ V | |
17 | 16 | elsn 4663 | . . . 4 ⊢ (((invg‘𝐺)‘ 0 ) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) = 0 ) |
18 | 15, 17 | sylibr 234 | . . 3 ⊢ (𝐺 ∈ Grp → ((invg‘𝐺)‘ 0 ) ∈ { 0 }) |
19 | oveq1 7455 | . . . . . . . 8 ⊢ (𝑎 = 0 → (𝑎(+g‘𝐺)𝑏) = ( 0 (+g‘𝐺)𝑏)) | |
20 | 19 | eleq1d 2829 | . . . . . . 7 ⊢ (𝑎 = 0 → ((𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺)𝑏) ∈ { 0 })) |
21 | 20 | ralbidv 3184 | . . . . . 6 ⊢ (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ∀𝑏 ∈ { 0 } ( 0 (+g‘𝐺)𝑏) ∈ { 0 })) |
22 | oveq2 7456 | . . . . . . . 8 ⊢ (𝑏 = 0 → ( 0 (+g‘𝐺)𝑏) = ( 0 (+g‘𝐺) 0 )) | |
23 | 22 | eleq1d 2829 | . . . . . . 7 ⊢ (𝑏 = 0 → (( 0 (+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
24 | 5, 23 | ralsn 4705 | . . . . . 6 ⊢ (∀𝑏 ∈ { 0 } ( 0 (+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 }) |
25 | 21, 24 | bitrdi 287 | . . . . 5 ⊢ (𝑎 = 0 → (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ↔ ( 0 (+g‘𝐺) 0 ) ∈ { 0 })) |
26 | fveq2 6920 | . . . . . 6 ⊢ (𝑎 = 0 → ((invg‘𝐺)‘𝑎) = ((invg‘𝐺)‘ 0 )) | |
27 | 26 | eleq1d 2829 | . . . . 5 ⊢ (𝑎 = 0 → (((invg‘𝐺)‘𝑎) ∈ { 0 } ↔ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
28 | 25, 27 | anbi12d 631 | . . . 4 ⊢ (𝑎 = 0 → ((∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ∧ ((invg‘𝐺)‘ 0 ) ∈ { 0 }))) |
29 | 5, 28 | ralsn 4705 | . . 3 ⊢ (∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 }) ↔ (( 0 (+g‘𝐺) 0 ) ∈ { 0 } ∧ ((invg‘𝐺)‘ 0 ) ∈ { 0 })) |
30 | 13, 18, 29 | sylanbrc 582 | . 2 ⊢ (𝐺 ∈ Grp → ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 })) |
31 | 1, 8, 14 | issubg2 19181 | . 2 ⊢ (𝐺 ∈ Grp → ({ 0 } ∈ (SubGrp‘𝐺) ↔ ({ 0 } ⊆ (Base‘𝐺) ∧ { 0 } ≠ ∅ ∧ ∀𝑎 ∈ { 0 } (∀𝑏 ∈ { 0 } (𝑎(+g‘𝐺)𝑏) ∈ { 0 } ∧ ((invg‘𝐺)‘𝑎) ∈ { 0 })))) |
32 | 4, 7, 30, 31 | mpbir3and 1342 | 1 ⊢ (𝐺 ∈ Grp → { 0 } ∈ (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ⊆ wss 3976 ∅c0 4352 {csn 4648 ‘cfv 6573 (class class class)co 7448 Basecbs 17258 +gcplusg 17311 0gc0g 17499 Grpcgrp 18973 invgcminusg 18974 SubGrpcsubg 19160 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-subg 19163 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |