MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbusgrf1o1 Structured version   Visualization version   GIF version

Theorem nbusgrf1o1 27735
Description: The set of neighbors of a vertex is isomorphic to the set of edges containing the vertex in a simple graph. (Contributed by Alexander van der Vekens, 19-Dec-2017.) (Revised by AV, 28-Oct-2020.)
Hypotheses
Ref Expression
nbusgrf1o1.v 𝑉 = (Vtx‘𝐺)
nbusgrf1o1.e 𝐸 = (Edg‘𝐺)
nbusgrf1o1.n 𝑁 = (𝐺 NeighbVtx 𝑈)
nbusgrf1o1.i 𝐼 = {𝑒𝐸𝑈𝑒}
Assertion
Ref Expression
nbusgrf1o1 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ∃𝑓 𝑓:𝑁1-1-onto𝐼)
Distinct variable groups:   𝑒,𝐸   𝑈,𝑒   𝑒,𝐺   𝑒,𝐼   𝑒,𝑁   𝑒,𝑉   𝑓,𝐼   𝑓,𝑁   𝑈,𝑓
Allowed substitution hints:   𝐸(𝑓)   𝐺(𝑓)   𝑉(𝑓)

Proof of Theorem nbusgrf1o1
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 nbusgrf1o1.n . . . 4 𝑁 = (𝐺 NeighbVtx 𝑈)
21ovexi 7305 . . 3 𝑁 ∈ V
3 mptexg 7094 . . 3 (𝑁 ∈ V → (𝑛𝑁 ↦ {𝑈, 𝑛}) ∈ V)
42, 3mp1i 13 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛𝑁 ↦ {𝑈, 𝑛}) ∈ V)
5 nbusgrf1o1.v . . 3 𝑉 = (Vtx‘𝐺)
6 nbusgrf1o1.e . . 3 𝐸 = (Edg‘𝐺)
7 nbusgrf1o1.i . . 3 𝐼 = {𝑒𝐸𝑈𝑒}
8 eqid 2740 . . 3 (𝑛𝑁 ↦ {𝑈, 𝑛}) = (𝑛𝑁 ↦ {𝑈, 𝑛})
95, 6, 1, 7, 8nbusgrf1o0 27734 . 2 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → (𝑛𝑁 ↦ {𝑈, 𝑛}):𝑁1-1-onto𝐼)
10 f1oeq1 6702 . 2 (𝑓 = (𝑛𝑁 ↦ {𝑈, 𝑛}) → (𝑓:𝑁1-1-onto𝐼 ↔ (𝑛𝑁 ↦ {𝑈, 𝑛}):𝑁1-1-onto𝐼))
114, 9, 10spcedv 3536 1 ((𝐺 ∈ USGraph ∧ 𝑈𝑉) → ∃𝑓 𝑓:𝑁1-1-onto𝐼)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1542  wex 1786  wcel 2110  {crab 3070  Vcvv 3431  {cpr 4569  cmpt 5162  1-1-ontowf1o 6431  cfv 6432  (class class class)co 7271  Vtxcvtx 27364  Edgcedg 27415  USGraphcusgr 27517   NeighbVtx cnbgr 27697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-om 7707  df-1st 7824  df-2nd 7825  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-er 8481  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-dju 9660  df-card 9698  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12582  df-fz 13239  df-hash 14043  df-edg 27416  df-upgr 27450  df-umgr 27451  df-uspgr 27518  df-usgr 27519  df-nbgr 27698
This theorem is referenced by:  nbusgrf1o  27736
  Copyright terms: Public domain W3C validator