| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fzsuc | Structured version Visualization version GIF version | ||
| Description: Join a successor to the end of a finite set of sequential integers. (Contributed by NM, 19-Jul-2008.) (Revised by Mario Carneiro, 28-Apr-2015.) |
| Ref | Expression |
|---|---|
| fzsuc | ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2uz 12838 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (ℤ≥‘𝑀)) | |
| 2 | eluzfz2 13471 | . . . . 5 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) |
| 4 | peano2fzr 13476 | . . . 4 ⊢ ((𝑁 ∈ (ℤ≥‘𝑀) ∧ (𝑁 + 1) ∈ (𝑀...(𝑁 + 1))) → 𝑁 ∈ (𝑀...(𝑁 + 1))) | |
| 5 | 3, 4 | mpdan 687 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ (𝑀...(𝑁 + 1))) |
| 6 | fzsplit 13489 | . . 3 ⊢ (𝑁 ∈ (𝑀...(𝑁 + 1)) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1)))) | |
| 7 | 5, 6 | syl 17 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1)))) |
| 8 | eluzelz 12781 | . . . 4 ⊢ ((𝑁 + 1) ∈ (ℤ≥‘𝑀) → (𝑁 + 1) ∈ ℤ) | |
| 9 | fzsn 13505 | . . . 4 ⊢ ((𝑁 + 1) ∈ ℤ → ((𝑁 + 1)...(𝑁 + 1)) = {(𝑁 + 1)}) | |
| 10 | 1, 8, 9 | 3syl 18 | . . 3 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑁 + 1)...(𝑁 + 1)) = {(𝑁 + 1)}) |
| 11 | 10 | uneq2d 4127 | . 2 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → ((𝑀...𝑁) ∪ ((𝑁 + 1)...(𝑁 + 1))) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
| 12 | 7, 11 | eqtrd 2764 | 1 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (𝑀...(𝑁 + 1)) = ((𝑀...𝑁) ∪ {(𝑁 + 1)})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∪ cun 3909 {csn 4585 ‘cfv 6499 (class class class)co 7369 1c1 11047 + caddc 11049 ℤcz 12507 ℤ≥cuz 12771 ...cfz 13446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11102 ax-resscn 11103 ax-1cn 11104 ax-icn 11105 ax-addcl 11106 ax-addrcl 11107 ax-mulcl 11108 ax-mulrcl 11109 ax-mulcom 11110 ax-addass 11111 ax-mulass 11112 ax-distr 11113 ax-i2m1 11114 ax-1ne0 11115 ax-1rid 11116 ax-rnegex 11117 ax-rrecex 11118 ax-cnre 11119 ax-pre-lttri 11120 ax-pre-lttrn 11121 ax-pre-ltadd 11122 ax-pre-mulgt0 11123 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-pnf 11188 df-mnf 11189 df-xr 11190 df-ltxr 11191 df-le 11192 df-sub 11385 df-neg 11386 df-nn 12165 df-n0 12421 df-z 12508 df-uz 12772 df-fz 13447 |
| This theorem is referenced by: elfzp1 13513 fztp 13519 fzsuc2 13521 fzdifsuc 13523 bpoly3 16001 prmind2 16632 vdwlem6 16934 gsummptfzsplit 19847 telgsumfzslem 19903 imasdsf1olem 24295 voliunlem1 25485 chtub 27157 2sqlem10 27373 dchrisum0flb 27455 pntpbnd1 27531 wlkp1 29661 iuninc 32540 esumfzf 34053 cvmliftlem10 35275 poimirlem2 37610 iunp1 45054 sge0p1 46406 |
| Copyright terms: Public domain | W3C validator |