MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzunsnext Structured version   Visualization version   GIF version

Theorem ssfzunsnext 13537
Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 13-Nov-2021.)
Assertion
Ref Expression
ssfzunsnext ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))

Proof of Theorem ssfzunsnext
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝑆 ⊆ (𝑀...𝑁))
2 simp3 1138 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
3 simp1 1136 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑀 ∈ ℤ)
42, 3ifcld 4538 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ)
54adantr 480 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ)
6 simp2 1137 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℤ)
76, 2ifcld 4538 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ)
87adantr 480 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ)
9 elfzelz 13492 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
109adantl 481 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
114zred 12645 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℝ)
1211adantr 480 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℝ)
13 zre 12540 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
14133ad2ant1 1133 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑀 ∈ ℝ)
1514adantr 480 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
169zred 12645 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℝ)
1716adantl 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℝ)
18 zre 12540 . . . . . . . . . . . . 13 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
1913, 18anim12i 613 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ))
2019ancomd 461 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
21203adant2 1131 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
2221adantr 480 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
23 min2 13157 . . . . . . . . 9 ((𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝑀)
2422, 23syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝑀)
25 elfzle1 13495 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑁) → 𝑀𝑘)
2625adantl 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑀𝑘)
2712, 15, 17, 24, 26letrd 11338 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝑘)
28 zre 12540 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
29283ad2ant2 1134 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℝ)
3029adantr 480 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℝ)
317zred 12645 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℝ)
3231adantr 480 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℝ)
33 elfzle2 13496 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑁)
3433adantl 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘𝑁)
3528, 18anim12i 613 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ))
36353adant1 1130 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ))
3736ancomd 461 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ))
38 max2 13154 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝐼𝑁, 𝑁, 𝐼))
3937, 38syl 17 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ≤ if(𝐼𝑁, 𝑁, 𝐼))
4039adantr 480 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑁 ≤ if(𝐼𝑁, 𝑁, 𝐼))
4117, 30, 32, 34, 40letrd 11338 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ≤ if(𝐼𝑁, 𝑁, 𝐼))
425, 8, 10, 27, 41elfzd 13483 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
4342ex 412 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼))))
4443ssrdv 3955 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑀...𝑁) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
4544adantl 481 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑀...𝑁) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
461, 45sstrd 3960 . 2 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝑆 ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
474adantl 481 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ)
487adantl 481 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ)
492adantl 481 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝐼 ∈ ℤ)
50193adant2 1131 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ))
5150adantl 481 . . . . . 6 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ))
5251ancomd 461 . . . . 5 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
53 min1 13156 . . . . 5 ((𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝐼)
5452, 53syl 17 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝐼)
5536adantl 481 . . . . . 6 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ))
5655ancomd 461 . . . . 5 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ))
57 max1 13152 . . . . 5 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝐼 ≤ if(𝐼𝑁, 𝑁, 𝐼))
5856, 57syl 17 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝐼 ≤ if(𝐼𝑁, 𝑁, 𝐼))
5947, 48, 49, 54, 58elfzd 13483 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝐼 ∈ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
6059snssd 4776 . 2 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → {𝐼} ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
6146, 60unssd 4158 1 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  cun 3915  wss 3917  ifcif 4491  {csn 4592   class class class wbr 5110  (class class class)co 7390  cr 11074  cle 11216  cz 12536  ...cfz 13475
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-pre-lttri 11149  ax-pre-lttrn 11150
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-neg 11415  df-z 12537  df-uz 12801  df-fz 13476
This theorem is referenced by:  ssfzunsn  13538  setsstruct2  17151
  Copyright terms: Public domain W3C validator