MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssfzunsnext Structured version   Visualization version   GIF version

Theorem ssfzunsnext 13301
Description: A subset of a finite sequence of integers extended by an integer is a subset of a (possibly extended) finite sequence of integers. (Contributed by AV, 13-Nov-2021.)
Assertion
Ref Expression
ssfzunsnext ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))

Proof of Theorem ssfzunsnext
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝑆 ⊆ (𝑀...𝑁))
2 simp3 1137 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝐼 ∈ ℤ)
3 simp1 1135 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑀 ∈ ℤ)
42, 3ifcld 4505 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ)
54adantr 481 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ)
6 simp2 1136 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℤ)
76, 2ifcld 4505 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ)
87adantr 481 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ)
9 elfzelz 13256 . . . . . . . 8 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℤ)
109adantl 482 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℤ)
114zred 12426 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℝ)
1211adantr 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℝ)
13 zre 12323 . . . . . . . . . 10 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
14133ad2ant1 1132 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑀 ∈ ℝ)
1514adantr 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑀 ∈ ℝ)
169zred 12426 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ ℝ)
1716adantl 482 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ ℝ)
18 zre 12323 . . . . . . . . . . . . 13 (𝐼 ∈ ℤ → 𝐼 ∈ ℝ)
1913, 18anim12i 613 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ))
2019ancomd 462 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
21203adant2 1130 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
2221adantr 481 . . . . . . . . 9 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
23 min2 12924 . . . . . . . . 9 ((𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝑀)
2422, 23syl 17 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝑀)
25 elfzle1 13259 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑁) → 𝑀𝑘)
2625adantl 482 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑀𝑘)
2712, 15, 17, 24, 26letrd 11132 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝑘)
28 zre 12323 . . . . . . . . . 10 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
29283ad2ant2 1133 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ∈ ℝ)
3029adantr 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑁 ∈ ℝ)
317zred 12426 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℝ)
3231adantr 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℝ)
33 elfzle2 13260 . . . . . . . . 9 (𝑘 ∈ (𝑀...𝑁) → 𝑘𝑁)
3433adantl 482 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘𝑁)
3528, 18anim12i 613 . . . . . . . . . . . 12 ((𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ))
36353adant1 1129 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ))
3736ancomd 462 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ))
38 max2 12921 . . . . . . . . . 10 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝐼𝑁, 𝑁, 𝐼))
3937, 38syl 17 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → 𝑁 ≤ if(𝐼𝑁, 𝑁, 𝐼))
4039adantr 481 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑁 ≤ if(𝐼𝑁, 𝑁, 𝐼))
4117, 30, 32, 34, 40letrd 11132 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ≤ if(𝐼𝑁, 𝑁, 𝐼))
425, 8, 10, 27, 41elfzd 13247 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ 𝑘 ∈ (𝑀...𝑁)) → 𝑘 ∈ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
4342ex 413 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑘 ∈ (𝑀...𝑁) → 𝑘 ∈ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼))))
4443ssrdv 3927 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑀...𝑁) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
4544adantl 482 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑀...𝑁) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
461, 45sstrd 3931 . 2 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝑆 ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
474adantl 482 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → if(𝐼𝑀, 𝐼, 𝑀) ∈ ℤ)
487adantl 482 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → if(𝐼𝑁, 𝑁, 𝐼) ∈ ℤ)
492adantl 482 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝐼 ∈ ℤ)
50193adant2 1130 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ))
5150adantl 482 . . . . . 6 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑀 ∈ ℝ ∧ 𝐼 ∈ ℝ))
5251ancomd 462 . . . . 5 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ))
53 min1 12923 . . . . 5 ((𝐼 ∈ ℝ ∧ 𝑀 ∈ ℝ) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝐼)
5452, 53syl 17 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → if(𝐼𝑀, 𝐼, 𝑀) ≤ 𝐼)
5536adantl 482 . . . . . 6 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑁 ∈ ℝ ∧ 𝐼 ∈ ℝ))
5655ancomd 462 . . . . 5 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ))
57 max1 12919 . . . . 5 ((𝐼 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝐼 ≤ if(𝐼𝑁, 𝑁, 𝐼))
5856, 57syl 17 . . . 4 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝐼 ≤ if(𝐼𝑁, 𝑁, 𝐼))
5947, 48, 49, 54, 58elfzd 13247 . . 3 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → 𝐼 ∈ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
6059snssd 4742 . 2 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → {𝐼} ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
6146, 60unssd 4120 1 ((𝑆 ⊆ (𝑀...𝑁) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐼 ∈ ℤ)) → (𝑆 ∪ {𝐼}) ⊆ (if(𝐼𝑀, 𝐼, 𝑀)...if(𝐼𝑁, 𝑁, 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2106  cun 3885  wss 3887  ifcif 4459  {csn 4561   class class class wbr 5074  (class class class)co 7275  cr 10870  cle 11010  cz 12319  ...cfz 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-pre-lttri 10945  ax-pre-lttrn 10946
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-neg 11208  df-z 12320  df-uz 12583  df-fz 13240
This theorem is referenced by:  ssfzunsn  13302  setsstruct2  16875
  Copyright terms: Public domain W3C validator