Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > zsssubrg | Structured version Visualization version GIF version |
Description: The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.) |
Ref | Expression |
---|---|
zsssubrg | ⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 488 | . . . . . 6 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℤ) | |
2 | ax-1cn 10633 | . . . . . 6 ⊢ 1 ∈ ℂ | |
3 | cnfldmulg 20198 | . . . . . 6 ⊢ ((𝑥 ∈ ℤ ∧ 1 ∈ ℂ) → (𝑥(.g‘ℂfld)1) = (𝑥 · 1)) | |
4 | 1, 2, 3 | sylancl 589 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) = (𝑥 · 1)) |
5 | zcn 12025 | . . . . . . 7 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
6 | 5 | adantl 485 | . . . . . 6 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ ℂ) |
7 | 6 | mulid1d 10696 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥 · 1) = 𝑥) |
8 | 4, 7 | eqtrd 2793 | . . . 4 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) = 𝑥) |
9 | subrgsubg 19609 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 ∈ (SubGrp‘ℂfld)) | |
10 | 9 | adantr 484 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑅 ∈ (SubGrp‘ℂfld)) |
11 | cnfld1 20191 | . . . . . . 7 ⊢ 1 = (1r‘ℂfld) | |
12 | 11 | subrg1cl 19611 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → 1 ∈ 𝑅) |
13 | 12 | adantr 484 | . . . . 5 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 1 ∈ 𝑅) |
14 | eqid 2758 | . . . . . 6 ⊢ (.g‘ℂfld) = (.g‘ℂfld) | |
15 | 14 | subgmulgcl 18359 | . . . . 5 ⊢ ((𝑅 ∈ (SubGrp‘ℂfld) ∧ 𝑥 ∈ ℤ ∧ 1 ∈ 𝑅) → (𝑥(.g‘ℂfld)1) ∈ 𝑅) |
16 | 10, 1, 13, 15 | syl3anc 1368 | . . . 4 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → (𝑥(.g‘ℂfld)1) ∈ 𝑅) |
17 | 8, 16 | eqeltrrd 2853 | . . 3 ⊢ ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥 ∈ ℤ) → 𝑥 ∈ 𝑅) |
18 | 17 | ex 416 | . 2 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → (𝑥 ∈ ℤ → 𝑥 ∈ 𝑅)) |
19 | 18 | ssrdv 3898 | 1 ⊢ (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3858 ‘cfv 6335 (class class class)co 7150 ℂcc 10573 1c1 10576 · cmul 10580 ℤcz 12020 .gcmg 18291 SubGrpcsubg 18340 SubRingcsubrg 19599 ℂfldccnfld 20166 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-addf 10654 ax-mulf 10655 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-1st 7693 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-fz 12940 df-seq 13419 df-struct 16543 df-ndx 16544 df-slot 16545 df-base 16547 df-sets 16548 df-ress 16549 df-plusg 16636 df-mulr 16637 df-starv 16638 df-tset 16642 df-ple 16643 df-ds 16645 df-unif 16646 df-0g 16773 df-mgm 17918 df-sgrp 17967 df-mnd 17978 df-grp 18172 df-minusg 18173 df-mulg 18292 df-subg 18343 df-cmn 18975 df-mgp 19308 df-ur 19320 df-ring 19367 df-cring 19368 df-subrg 19601 df-cnfld 20167 |
This theorem is referenced by: qsssubdrg 20225 clmzss 23779 dvply2g 24980 |
Copyright terms: Public domain | W3C validator |