Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgbas | Structured version Visualization version GIF version |
Description: Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgbas.b | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subrgbas | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgsubg 19624 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | |
2 | subrgbas.b | . . 3 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
3 | 2 | subgbas 18365 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘𝑆)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2112 ‘cfv 6341 (class class class)co 7157 Basecbs 16556 ↾s cress 16557 SubGrpcsubg 18355 SubRingcsubrg 19614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5174 ax-nul 5181 ax-pow 5239 ax-pr 5303 ax-un 7466 ax-cnex 10645 ax-1cn 10647 ax-addcl 10649 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-reu 3078 df-rab 3080 df-v 3412 df-sbc 3700 df-csb 3809 df-dif 3864 df-un 3866 df-in 3868 df-ss 3878 df-pss 3880 df-nul 4229 df-if 4425 df-pw 4500 df-sn 4527 df-pr 4529 df-tp 4531 df-op 4533 df-uni 4803 df-iun 4889 df-br 5038 df-opab 5100 df-mpt 5118 df-tr 5144 df-id 5435 df-eprel 5440 df-po 5448 df-so 5449 df-fr 5488 df-we 5490 df-xp 5535 df-rel 5536 df-cnv 5537 df-co 5538 df-dm 5539 df-rn 5540 df-res 5541 df-ima 5542 df-pred 6132 df-ord 6178 df-on 6179 df-lim 6180 df-suc 6181 df-iota 6300 df-fun 6343 df-fn 6344 df-f 6345 df-f1 6346 df-fo 6347 df-f1o 6348 df-fv 6349 df-ov 7160 df-oprab 7161 df-mpo 7162 df-om 7587 df-wrecs 7964 df-recs 8025 df-rdg 8063 df-nn 11689 df-ndx 16559 df-slot 16560 df-base 16562 df-sets 16563 df-ress 16564 df-subg 18358 df-ring 19382 df-subrg 19616 |
This theorem is referenced by: subrg1 19628 subrgmcl 19630 subrgdvds 19632 subrguss 19633 subrginv 19634 subrgdv 19635 subrgunit 19636 issubdrg 19643 subsubrg 19644 abvres 19693 qsssubdrg 20240 gzrngunitlem 20246 gzrngunit 20247 issubassa3 20645 sraassa 20647 resspsrbas 20758 resspsradd 20759 resspsrmul 20760 resspsrvsca 20761 subrgpsr 20762 subrgascl 20842 subrgasclcl 20843 dmatcrng 21217 scmatcrng 21236 scmatstrbas 21241 sranlm 23401 isclmi 23793 plypf1 24923 idlinsubrg 31143 evlsscaval 39818 evlsbagval 39820 mhphf 39830 |
Copyright terms: Public domain | W3C validator |