Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > subrgbas | Structured version Visualization version GIF version |
Description: Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
Ref | Expression |
---|---|
subrgbas.b | ⊢ 𝑆 = (𝑅 ↾s 𝐴) |
Ref | Expression |
---|---|
subrgbas | ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrgsubg 20030 | . 2 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | |
2 | subrgbas.b | . . 3 ⊢ 𝑆 = (𝑅 ↾s 𝐴) | |
3 | 2 | subgbas 18759 | . 2 ⊢ (𝐴 ∈ (SubGrp‘𝑅) → 𝐴 = (Base‘𝑆)) |
4 | 1, 3 | syl 17 | 1 ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 = (Base‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2106 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 ↾s cress 16941 SubGrpcsubg 18749 SubRingcsubrg 20020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-1cn 10929 ax-addcl 10931 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-subg 18752 df-ring 19785 df-subrg 20022 |
This theorem is referenced by: subrg1 20034 subrgmcl 20036 subrgdvds 20038 subrguss 20039 subrginv 20040 subrgdv 20041 subrgunit 20042 issubdrg 20049 subsubrg 20050 abvres 20099 qsssubdrg 20657 gzrngunitlem 20663 gzrngunit 20664 issubassa3 21072 sraassa 21074 resspsrbas 21184 resspsradd 21185 resspsrmul 21186 resspsrvsca 21187 subrgpsr 21188 subrgascl 21274 subrgasclcl 21275 dmatcrng 21651 scmatcrng 21670 scmatstrbas 21675 sranlm 23848 isclmi 24240 plypf1 25373 idlinsubrg 31608 evlsscaval 40273 evlsbagval 40275 mhphf 40285 |
Copyright terms: Public domain | W3C validator |